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1 Introduction

We start with assets n ∈ N ≡ {1, 2, . . . , n̂}. Consider equispaced time instances
t ∈ T 0 ≡ {0, 1, 2, . . . , t̂}. Intervals [t− 1, t], t ∈ T ≡ T 0 − {0} of length ∆ years
are referred to as periods. The price of asset n at time t ∈ T 0 is at(n) and its

observed return in period [t− 1, t] is rt(n) ≡ ln
(

at(n)
at−1(n)

)
, t ∈ T .

A portfolio y ≡ [y(1), y(2), . . . , y(n̂]T is the allocation of y(n) euros to asset
n ∈ N . In general we assume a wealth of 1 euro, and take y(n) as the fraction
of wealth allocated to asset n. Given the above observations of asset returns, we
want to find a portfolio y so that its performance over the ‘future’ period [t̂, t̂+1]
has some desirable characteristics. Let r̄(n)|∆ be the expected return of asset n

over one period, and c(n, m)|∆ be the covariance of the period-returns of assets
n and m, both statistics derived from the above observations. Typically, these
values are annualized by multiplying both with 1

∆ to produce r̄(n) and c(n,m)
respectively. Assuming that the above statistical properties are constant over
time (and are, therefore, applicable for the future period [t̂, ˆt + 1]) Markowitz
formulated the portfolio selection problem as:
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Maximize: z =
∑

n∈N

r̄(n).y(n) (1)

subject to:
∑

n,m∈N

y(n)y(m)c(n,m) 6 ρ̂ (2)

∑

n∈N

y(n) = 1 (3)

y(n) > 0 ∀n ∈ N (4)

Equation 1 is the expected portfolio return, the lhs of equation 2 is the variance
of the portfolio return (which is the assumed measure of risk) and is required to
be less than a given risk level ρ̂, equation 3 is the budget constraint, and equation
4 excludes short positions. The matrix [c(n, m)] is positive semi-definite, the
optimization problem is convex and easily solvable as a quadratic program.

2 An LP formulation

An alternative measure of risk is the mean absolute deviation of the portfolio
return introduced by Konno & Yamazaki :

ρ =
∑

t∈T

qt

∣∣∣∣∣
∑

n∈N

(rt(n)− r̄(n))y(n)

∣∣∣∣∣ (5)

where qt = 1/t̂ is the probability that the asset return vector at time t is
[rt(n), n ∈ N ].
The modulus of an expression X, i.e. |X|, can be rewritten as (u + v) using two
new variables u > 0 and v > 0, which satisfy:

u− v = X, u.v = 0, u, v > 0

Thus, using ρ as the risk measure and the above trick to eliminate the modulus,
the portfolio selection problem can be rewritten as
Problem P:
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Maximize: z =
∑

n∈N

r̄(n).y(n) (6)

subject to:
∑

t∈T

qt(ut + vt) 6 ρ̂ (7)

ut − vt =
∑

n∈N

(rt(n)− r̄(n))y(n), ∀t ∈ T (8)

∑

n∈N

rt(n).y(n) > −λ̌ ∀t ∈ T (9)

∑

n∈N

y(n) = 1 (10)

ut, vt > 0, ∀t ∈ T (11)

y(n) > 0, ∀n ∈ N (12)

together with the constraints

ut.vt = 0, ∀t ∈ T

The theory of linear programming implies that these last constraints are redun-
dant as pointed out by Chvatal. Thus the portfolio selection problem is defined
by the pure LP given by equations 6 to 12.

In equation 7, ρ̂ is now the upper limit of the mean absolute deviation risk
measure, and equation 9 imposes that in the worst (observed) case t, the port-
folio loss is not more than λ̌ (say 2% loss).

3 Enhancements to the LP in Mavro

3.1 Long only, or long/short portfolios

Substituting y(n) = y(n)+ − y(n)− (where ‘+’ implies a long and ‘-’ a short
position) in equations 6, 8, 9, and writing equations 10, 12, individually for
y(n)+ and y(n)−, leads to an LP that allows equal long and short positions.
The fact that y(n)+ and y(n)− cannot both be positive for a given n (and
which is implied by adding the constraints y(n)+.y(n)− = 0,∀n ∈ N) need not
be imposed explicitly.

3.2 Sector and/or country neutrality

It is a trivial matter to add several useful constraints to this model. For ex-
ample, let S be the set of all sectors and Ns be the set of assets in sector
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s ∈ S. Long/short sector neutrality can be imposed by the addition of con-
straints

∑
n∈Ns

[y(n)+ − y(n)−] = 0, ∀s ∈ S. Similarly for country neutrality.

3.3 Portfolio turnover: Existing solution

If we already hold a portfolio yold, and want the new portfolio to be different
from it only to an extent of, say, 100.ε percent, we can impose this by adding
the constraint: ∑

n∈N

|y(n)− yold(n))| 6 ε

We have already described the variable substitution that converts a modulus
function to a linear expression and hence the above constraint does not compli-
cate the LP model, but only slightly increases the number of variables.

3.4 Using forecasts

In the LP formulation, the time instances t need not be consecutive; indeed
they do not have to be historical, or actual realizations., and don’t even have to
relate to ‘time’. They can, for example, be scenarios generated as possibilities
for the asset returns in the future time period [t̂, t̂ + 1]. Similarly, qt does not
have to be set to 1/t̂ for all observations and can be greater than this for the
recent ones and less for the past ones. This means that forecasted values of the
asset returns over period [t̂, t̂ + 1] (say r̃ = [r̃(1), r̃(2), . . . , r̃(n̂)] can be added to
(for example) the historical realizations above, with probability weight q̃ depen-
dent on the confidence level given to this forecast. (Obviously, the rest of the
probabilities then need to be adjusted.)

A shortcoming in the above simple addition of forecasted values, lies in the
fact that the Mavro forecaster, forecasts asset returns individually with no ac-
count taken of their correlation. This means that the log-likelihood that the
return vector r̃ has been generated from the same stochastic process as the rest
of the return vectors is small. However, we already have a procedure to fully
correct this shortcoming as follows. Given that the observations r1, r2, . . . , rt̂

are historical we can easily compute parameter vectors µ and σ in an n̂-factor
GBM model.

The forecaster has nothing to say about σ and we keep this covariance ma-
trix unchanged (computed using the shrinkage operator described in Ledoit &
Wolf). However, by forecasting expected returns, the forecaster implies a differ-
ent vector µ over the next period [t̂, t̂ + 1]. (It is interesting to note here, that
in parameter estimation, it is very well documented in the literature that by far
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the most unreliable estimate between µ and σ, is µ.) Let µ̃ be the forecasted
value of µ.

In the note on the construction of a State Transition Graph, we described a
general procedure which, given n̂ assets following a joint GBM process with given
parameter vectors/matrices µ and σ, we can generate n̂+1 vectors r1, r2, . . . , rn̂+1

with corresponding probabilities p1, p2, . . . , pn̂+1, such that the mean values of
the returns and their correlations fit exactly the values implied by the given µ

and σ. Thus, although we cannot add the forecasted value of the asset returns
directly to the historical returns, we can add the set of n̂ + 1 vectors above,
and achieve precisely what we want, namely a local distortion of the return
distribution without a distortion of the asset interdependence.

3.5 Modifying the LP solutions

3.5.1 Portfolio size

The optimal solution y∗ of the LP model is likely to contain money allocations
(long or short) to many more assets than we wish to hold. Imposing a limit on
this number requires the introduction of integer variables which leads to a MIP
that is difficult to solve. Instead, we use a typical heuristic procedure as follows:
(i) Solve the LP
(ii) If the number of assets with non-zero money allocation is less than the
maximum allowable, stop; else
(iii) Let n′ be the asset n with the smallest value of |y(n)|. Set y(n) = 0 and
repeat from (i)

3.5.2 Alternative solutions

In the LP formulation, the risk parameters ρ̂ and λ̌ represent the risk-appetite
of the investor. We know that the lower the value of these parameters the more
risk averse is the investor. However, we may want to solve the LP several times
for different values of these parameters to get a few ‘optimal’ portfolios (for
different degrees of risk) from which a final selection is made.
Similarly, parameter q̃ determines the importance given to the forecasts. q̃ = 0
implies that the forecasts are ignored and only historical (or simulated) per-
formance is used, whereas q̃ = 1 implies that only the forecasted returns are
used.
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