
This article was downloaded by:[HEAL- Link Consortium]
On: 27 September 2007
Access Details: [subscription number 772810582]
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Quantitative Finance
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713665537

Implied non-recombining trees and calibration for the
volatility smile
Chris Charalambous a; Nicos Christofides b; Eleni D. Constantinide a; Spiros H.
Martzoukos a
a Department of Business Administration, University of Cyprus, CY, 1678 Nicosia,
Cyprus
b Centre for Quantitative Finance, Imperial College, London, UK

Online Publication Date: 01 August 2007
To cite this Article: Charalambous, Chris, Christofides, Nicos, Constantinide, Eleni
D. and Martzoukos, Spiros H. (2007) 'Implied non-recombining trees and calibration
for the volatility smile', Quantitative Finance, 7:4, 459 - 472
To link to this article: DOI: 10.1080/14697680701488692

URL: http://dx.doi.org/10.1080/14697680701488692

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713665537
http://dx.doi.org/10.1080/14697680701488692
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [H
E

A
L-

 L
in

k 
C

on
so

rti
um

] A
t: 

11
:1

1 
27

 S
ep

te
m

be
r 2

00
7 

Quantitative Finance, Vol. 7, No. 4, August 2007, 459–472
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In this paper we capture the implied distribution from option market data using a non-
recombining (binary) tree, allowing the local volatility to be a function of the underlying asset
and of time. The problem under consideration is a non-convex optimization problem with
linear constraints. We elaborate on the initial guess for the volatility term structure and use
nonlinear constrained optimization to minimize the least squares error function on market
prices. The proposed model can accommodate European options with single maturities and,
with minor modifications, options with multiple maturities. It can provide a market-consistent
tree for option replication with transaction costs (often this requires a non-recombining tree)
and can help pricing of exotic and Over The Counter (OTC) options. We test our model using
options data for the FTSE 100 index obtained from LIFFE. The results strongly support our
modelling approach.

Keywords: Volatility smile; Implied non-recombining trees; Calibration; Non-convex
constrained optimization

1. Introduction

Calibrating a tree, otherwise known as constructing an

implied tree, means finding the stock price and/or

associated probability at each node in such a way that

the tree reproduces the current market prices for a set of

benchmark instruments. The main benefit of calibrating a

model to a set of observed option prices is that the

calibrated model is consistent with today’s market prices.

The calibrated model can then be used to price other more

complex or less liquid securities, such as (OTC) options

whose prices may not be available in the market.
The binomial tree is the most widely used tool in the

fnancial pricing industry. The classic Cox–Ross–

Rubinstein (CRR, 1979) binomial tree is a discretization

of the Black–Scholes (BS, 1973) model since it is based on

the assumption of the BS model that the underlying asset

evolves according to a geometric Brownian motion with a

constant volatility factor. This, however, contradicts the

observed implied volatility, which suggests that volatility

depends on both the strike and maturity of an option, a

relationship commonly known as the volatility smile. This

problem has motivated the recent literature on ‘smile

consistent’ no-arbitrage models. Consistency is achieved by

extracting an implied evolution for the stock price from

market prices of liquid standard options on the under-

lying asset. There are two classes of methodologies within

this approach. Smile consistent deterministic volatility

models (Derman and Kani 1994, Dupire 1994, Rubinstein

1994, Barle and Kakici 1995, Jackwerth and Rubinstein

1996, Jackwerth 1997, etc.); and stochastic volatility smile

consistent models which allow for smile-consistent option

pricing under the no-arbitrage evolution of the volatility

surface (Derman and Kani 1998, Ledoit and Santa-Clara

1998, Britten-Jones and Neuberger 2000, etc.). The latter

class of models is more general and it nests the former

class of models (Skiadopoulos 2001). There also exist non-

parametric methods, like Stutzer (1996) who uses the

maximum entropy concept to derive the risk neutral*Corresponding author. Email: bachris@ucy.ac.cy
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distribution from the historical distribution of the asset
price and Ait-Sahalia and Lo (1998) who propose a non-
parametric estimation procedure for state-price densities
using observed option prices.

Smile consistent deterministic volatility models are
based on the assumption that the local volatility of the
underlying asset is a known function of time and of the
path and level of the underlying asset price. However,
they do not specify local volatility in advance, but derive
it endogenously from the European option prices.
Therefore, they preserve the ‘pricing by no-arbitrage’
property of the BS model, and the markets are complete
since the option’s pay-off can be synthesized from existing
assets.

Rubinstein (1994) finds the implied risk-neutral
terminal-node probability distribution which is in the
least-squares sense, closest to the lognormal subject to
some constraints. The probabilities must add up to one
and be non-negative. Moreover, they are calculated so
that the present value of the underlying assets and all
the European options calculated with these probabil-
ities, fall between their respective bid–ask prices. This
methodology allows for an arbitrary terminal-node
probability distribution, but assumes that path prob-
abilities leading to the same ending node are equal.
Rubinstein’s (1994) methodology suffers from the fact
that options expiring at early time steps cannot be used
for the construction of the tree. Thus, options with
maturity other than the maturity of the options used
during the construction of the tree are not consistent
with market prices.

Jackwerth (1997) introduced generalized binomial trees
as an extension of Rubinstein (1994). His model allows
for an arbitrary terminal-node probability distribution,
but also allows path probabilities leading to the same
node to take different values.

Derman and Kani (1994) and Dupire (1994) con-
structed recombining binomial trees using a large set of
option prices. For each node they need a corresponding
option price with strike price equal to the previous node’s
stock price and expiring at the time associated with that
node. Since they have fewer option prices than required,
they need to interpolate and extrapolate from given
option prices. Their trees are sensitive to the interpolation
and extrapolation method and require adjustments to
avoid arbitrage violations.

Barle and Cakici (1995) introduced a number of
modifications which aimed to eliminate negative prob-
abilities and improve the general stability of Derman’s
and Kani’s (1994) model. Although their modified
method fits the smile accurately, negative probabilities
may still occur with increases in the volatility smile
and interest rate. As they state, this is because of their
‘. . . strict requirement that continuous diffusion be
modelled as a binomial process and on a recombining
tree’. This problem can be referred to as a problem of
interdependencies between nodes.

Possible methods that can be used to reduce the
problem of inter-dependencies are the calibration of
trinomial (or multinomial) trees or non-recombining
trees. These extra degrees of freedom allow for more
flexibility in the estimation of the distribution of the
underlying asset.

Trinomial trees provide a much better approximation
to the continuous time process than the binomial trees for
the same number of steps. However, the extra degrees of
freedom (additional number of nodes) require a larger
number of simultaneous equations to be solved. Derman
et al. (1996) proposed implied trinomial trees. In their
model they use the additional parameters to conveniently
choose the ‘state space’of all node prices in the tree, and
let only the transition probabilities be constrained by
market options prices. Chriss (1996) generalized their
method for American style options.

In this paper we propose a method for calibrating a
non-recombining (binary) tree, based on optimization.
Specifically, we minimize the discrepancy between the
observed market prices and the theoretical values with
respect to the underlying asset at each node, subject to
constraints that maintain risk neutrality and prevent
arbitrage opportunities. Our model is built on a non-
recombining treey so as to allow the local volatility to be a
function of the underlying asset and of time and to enable
each node of the tree to act as an independent variable.
Effectively, the problem under consideration is a non-
convex optimization problem with linear constraints. We
elaborate on the initial guess for the volatility term
structure, and using methods from nonlinear constrained
optimization we minimize the least-squares error func-
tion. Specifically, we adopt a penalty method and for the
optimization we use a quasi-Newton algorithm. Because
of the combinatorial nature of the tree and the large
number of constraints, the search for an optimum
solution as well as the choice of an algorithm that
performs well becomes a very challenging problem.

Our model was created as a response for the need of a
non-recombining implied tree. The main benefit of the
model is its analytical structure which enables us to use
efficient methods for nonlinear optimization. Although
the method uses a large number of variables, due to the
fact that we use efficient methods for optimization
the model is not computationally intensive. Also, the
proposed methodology can be easily modified to capture
the observed bid/ask spreads in the market. This is very
useful since the reported closing prices may not always be
accurate, or may be inaccurate due to various market
frictions. In addition, calibration of the non-recombining
tree can be used for option replication with transaction
costs as in Edirisinghe et al. (1993) and other related
methodologies that require non-recombining trees.

In contrast to Rubinstein (1994), the proposed meth-
odology can be easily modified to account for European
contracts with different maturities. Our method does not
need any interpolation or extrapolation across strikes and

yOther work we are aware of that uses a non-recombining tree is of Talias (2005) where for the calibration he uses genetic
algorithms.

460 C. Charalambous et al.
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time to find hypothetical options as opposed to Derman
and Kani (1994). Finally, the extra degrees of freedom
and the analytical structure of the model would allow us
to impose smoothness constraints on the distribution of
the underlying asset if required.

We test our model using options data on the FTSE 100
index, for the year 2003 obtained from LIFFE. The
results strongly support our modelling approach. Pricing
results are smooth without the presence of an over-fitting
problem and the derived implied distributions are
realistic. Also, the computational burden is not a major
issue.

The paper continues as follows: in section 2 we describe
the proposed methodology and the initialization of the
non-recombining tree. In section 3 we discuss the imposed
risk neutrality and no-arbitrage constraints. In section 4
we describe the optimization algorithm. In section 5 we
test the model using FTSE 100 options data. Conclusions
are in section 6. In appendix A we prove the feasibility of
the initialized tree, in appendix B we prove the feasibility
of the initialized tree taking into account that the risk-free
rate, dividend yield and time step are time dependent and
in appendix C we adjust the formulas for time dependent
risk free rate, dividend yield and step size.

2. The proposed methodology and initialization of the

non-recombining tree

Our goal is to develop an arbitrage-free risk neutral
model that fits the smile, is preference-free, and can be
used to value options form easily observable data. In
order to allow more degrees of freedom, we use a non-
recombining tree. In the following section we present the
proposed methodology, and describe the initialization of
the tree.

Figure 1 shows a non-recombining tree with four steps.
The point (i, j) on the tree denotes:

i : the time dimension, i¼ 1, . . . , n
j : the asset (time specific) dimension, j¼ 1, . . . , 2i�1

S(i, j) is the value of the underlying asset at node (i, j).

Figure 2 shows a typical triplet in a non-recombining tree.
Let CMkt(k), k¼ 1, . . . ,N denote the market prices of N

European calls, with strikes K(k) and single maturities T.
Also, let CMod(x, k), k¼ 1, . . . ,N denote the theoretical
prices of the N calls obtained using the model. x denotes a
vector containing the variables of the model which are the
values of the underlying asset at each node of the tree,
excluding its current value. The ideal solution is to find
the values of the underlying asset (the model variables) at
each node of the tree such that a perfect match is achieved
between the option market prices and those predicted by
the tree. However, due to market imperfections and other
factors perfect matching may not always be possible.
Therefore, we minimize the discrepancy between the

observed market prices and the theoretical values

produced by the model subject to constraints that prevent

arbitrage opportunities.
We have to solve a non-convex constrained minimiza-

tion problem with respect to the values of the underlying

asset at each node:

min
x

XN
k¼1

wkf CModðx; kÞ;CMktðkÞð Þ; ð1Þ

where f denotes a suitable objective function on the error

between the observed and market prices. We can also

allow for a weight factor, wk.y In this paper we use the

least-squares error function which is defined as the sum of

square differences between market prices and theoretical

prices produced by the tree. The method can be adjusted

easily for any other objective function.
The philosophy of the initialization of the non-

recombining tree is the same as that of the construction

of the standard CRR binomial tree, but we adjust the

formulas so that the tree does not necessarily recombine.
We denote with u(i, j) and d(i, j) the up and down

factors by which the underlying asset price can move in

the single time step, �t , given that we are at node (i, j).

Figure 1. Non-recombining tree with 4 steps.

Figure 2. A typical triplet in a non-recombining tree.

yWeights can be related for example to the trading volume of the options.

Implied non-recombining trees and calibration for the volatility smile 461
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�t, u(i, j) and d(i, j) factors are given by the following

formulas:y

�t ¼
T

n� 1
, ð2Þ

uði, jÞ ¼ e�ðiÞ
ffiffiffiffi
�t

p

, i ¼ 1, . . . , n� 1, j ¼ 1, . . . , 2i�1, ð3aÞ

dði; jÞ ¼ e��ðiÞ
ffiffiffiffi
�t

p

¼
1

uði; jÞ
; ð3bÞ

where T is the option’s time to maturity and �(i) is the

volatility term structure at time step i.
We initialize the tree using the following volatility term

structure:

�ðiÞ ¼ �ð1Þe�ði�1Þ�t, � 2 R, i ¼ 1, . . . , n� 1, ð4Þ

where � is a constant parameter and �(1) is a properly

chosen initial value for the volatility. If � is positive, then

volatility increases as we approach maturity and if � is

negative, then volatility decreases as we approach

maturity.z
In order to preserve the risk neutrality at every

time step and hence obtain a feasible initial tree, we

choose � to belong to the following interval (for proof see

appendix A):

� 2
1

T
log

rf � �
�� �� ffiffiffiffiffiffi

�t
p

�ð1Þ

 !
;þ1

" !
: ð5Þ

By choosing � from the above interval, we allow the initial

volatility to increase or decrease across time. We make

several consecutive draws from interval (5) until we find

the value of � that gives the ‘optimal’tree.x
We denote with S(1, 1) the current value of the

underlying asset. The odd nodes of the tree S(i, j), are

initialized using the following equation:

Sði, jÞ ¼ S i� 1,
jþ 1

2

� �
d i� 1,

jþ 1

2

� �
, i ¼ 2, . . . , n,

j ¼ 1, 3, . . . , 2i�1 � 1: ð6aÞ

The even nodes of the tree S(i, j), are initialized using the

following equation:

Sði, jÞ ¼ S i� 1,
j

2

� �
u i� 1,

j

2

� �
, i ¼ 2, . . . , n,

j ¼ 2, 4, . . . , 2i�1: ð6bÞ

We want to point out that equations (3) to (6) are used

only for initialization. Once the optimization process

starts, each value of the underlying asset (except from

S(1,1)) acts as an independent variable in the system.
Upward transition probabilities give the probability of

moving from node (i, j) to node (iþ1, 2j) whereas

downward transition probabilities give the probability

of moving from node (i, j) to node (iþ1, 2j �1) for

i¼ 1, . . ., n �1 and j¼ 1, . . . , 2i�1. For the upward transi-

tion probabilities p(i, j) between the various nodes of the

tree we use the risk-neutral probability formula:�

pði, jÞ ¼
Sði, jÞeðrf��Þ�t � Sðiþ 1, 2j� 1Þ

Sðiþ 1, 2jÞ � Sðiþ 1, 2j� 1Þ
, i ¼ 1, . . . , n� 1,

j ¼ 1, . . . , 2i�1, ð7Þ

where rf denotes the annually continuously compounded

riskless rate of interest and � denotes the annually

continuously compounded dividend yield. Their respec-

tive downward probability is equal to one minus the

upward probability.
The call option value at the last time step is given by:

Cðn; jÞ ¼ maxfSðn; jÞ � K; 0g; j ¼ 1, . . . , 2n�1: ð8Þ

However, the function max is non-differentiable at

S(n, j)¼K. To overcome this problem, we propose the

following smoothing approximation to C(n, j):

C�ðn, jÞ

K

¼

0, for Sðn, jÞ=K� 1� z=2,

Sðn, jÞ

K
� 1, for Sðn, jÞ=K� 1þ z=2,

1

2z

Sðn, jÞ

K
� 1

� �
þ
z

2

� �2
, for 1� z=2� Sðn, jÞ/ K� 1þ z=2,

j¼ 1, . . . , 2n�1,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9aÞ

where z is a small positive constant, for example 0.01

(see figure 3).

Figure 3. Smoothing of the option pay-off function at maturity.

yFor simplicity, we make the assumption that the risk free rate, the dividend yield and the step size do not change across time.
Formulas adjusted for time dependence can be found in Appendices B and C.
zOther non-monotonic functions could also be used for � (i) but what we have tried proved adequate for our purposes.
xOptimal tree is the one that gives the lowest-value objective function subject to the initial constraints.
�Probability equation (7) is effectively a martingale restriction (see equation (6) and relevant discussion in Longstaff (1995)). Thus
the numerical implementation of the model with this probability equation is restricted to a Markovian stochastic process.

462 C. Charalambous et al.
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The value of the call at intermediate nodes is given by

the following equation:

Cði, jÞ ¼ pði, jÞCðiþ 1,2jÞþ ð1� pði, jÞÞCðiþ 1,2j� 1Þð Þe�rf�t,

i¼ n� 1, . . . , 1, j¼ 1, . . . , 2i�1: ð9bÞ

3. Risk neutrality and no-arbitrage constraints

In this section we describe the risk neutrality

and no-arbitrage constraints. In order for the

transition probabilities p(i, j) defined in equation (7) to

be well specified, they should take values between zero

and one. This implies the following risk-neutrality

constraints:

Sði, jÞeðrf��Þ�t � Sðiþ 1, 2jÞ, i¼ 1, . . . ,n� 1, j¼ 1, . . . , 2i�1,

ð10aÞ

Sði; jÞeðrf��Þ�t � Sðiþ 1; 2j� 1Þ: ð10bÞ

Risk neutrality constraints in the non-recombining tree

prevent nodes 2j� 1 and 2j to cross, for i¼ 1, . . . , n and

j¼ 1, . . . , 2i�1 (see figure 1).
Options (puts and calls) have upper and lower

bounds that do not depend on any particular assump-

tions on the factors that affect option prices. If the

option price is above the upper bound or below the

lower bound, there are profitable opportunities for

arbitrageurs. To avoid such opportunities, we include

the no-arbitrage constraints. Specifically, a European

call with dividends should lie between the following

bounds:

max Sð1, 1Þe��T � Ke�rfT, 0
� �

� CMod � Sð1, 1Þ: ð11Þ

Also, every value of the underlying asset on the tree

should be greater or equal to zero. Thus, we also impose

the following constraint:

Sði, jÞ � 0, i ¼ 2, . . . , n, j ¼ 1, . . . , 2i�1: ð12Þ

4. The optimization algorithm

The objective of the problem is to minimize the least-

squares error function of the discrepancy between the

observed market prices and the theoretical values

produced by the model. Thus, we have the following

optimization problem:

min
x

1

2

XN
k¼1

CModðx; kÞ � CMktðkÞð Þ
2; ð13Þ

where CMod(k) and CMkt(k) denote the model and market

price respectively of the kth call, k¼ 1, . . . ,N, subject to

the constraints:

ðiÞ g1ði, jÞ ¼ Sði, jÞeðrf��Þ�t � Sðiþ 1, 2j� 1Þ � 0,

i ¼ 1, . . . , n� 1, j ¼ 1, . . . , 2i�1: ð14aÞ

ðiiÞ g2ði, jÞ ¼ Sðiþ 1, 2jÞ � Sði, jÞeðrf��Þ�t � 0,

i ¼ 1, . . . , n� 1, j ¼ 1, . . . , 2i�1: ð14bÞ

ðiiiÞ g3ðkÞ ¼ Sð1, 1Þ � CModðkÞ � 0, k ¼ 1, . . . ,N: ð14cÞ

ðivÞ g4ðkÞ ¼ CModðkÞ �maxðSð1; 1Þe��T � KðkÞe�rfT; 0Þ � 0;

k ¼ 1, . . . ,N: ð14dÞ

ðvÞ g5ði; jÞ ¼ Sði; jÞ � 0; i ¼ 2, . . . , n; j ¼ 1, . . . , 2i�1:

ð14eÞ

Since the problem under consideration is a non-convex
optimization problem with linear constraints we adopt an
exterior penalty method (Fiacco and McCormick 1968) to
convert the nonlinear constrained problem into a non-
linear unconstrained problem. The Exterior Penalty
Objective function that we use is the following:

Pðx,�Þ ¼
1

2

XN
k¼1

CModðx, kÞ � CMktðkÞð Þ
2

þ
�

2

Xn�1

i¼1

X2i�1

j¼1

min g1ði, jÞ, 0ð Þ½ �
2
þ min g2ði, jÞ, 0ð Þ½ �

2
� �

þ
�

2

XN
k¼1

min g3ðkÞ, 0ð Þ½ �
2
þ min g4ðkÞ, 0ð Þ½ �

2
� �

þ
�

2

Xn
i¼2

X2i�1

j¼1

min g5ði, jÞ, 0ð Þ½ �
2

� �
: ð15Þ

The second, third and fourth terms in P(x, �) give a
positive contribution if and only if x infeasible. Under
mild conditions it can be proved that minimizing the
above penalty function for strictly increasing sequence �
tending to infinity, the optimum point x(�) of P tends to
x*, a solution of the constrained problem.

For the optimization we use a quasi-Newton algorithm.
Specifically we use the BFGS formulay (Fletcher 1987).
For the procedure of Line Search in the algorithm we use
the Charalambous (1992) method. To achieve the best
feasible solution, i.e. the solution that gives us a feasible
tree with the smallest error function we force the
algorithm to draw consecutively values of � from the
specified interval (5) until the objective function is smaller
than 1.E-4 and also the penalty term equals zero, i.e. we
have a feasible solution.

4.1. Implementation

For the implementation of the optimization method, we
need to calculate the partial derivatives of CMod(k)z with
respect to the value of the underlying asset at each node,

yThe BFGS formula was discovered in 1970 independently by Broyden, Fletcher, Goldfarb and Shanno.
zFrom now on we will use C(1,1) instead of CMod.

Implied non-recombining trees and calibration for the volatility smile 463
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for k¼ 1, . . . ,N, i.e. we want to find @C(1, 1, k)/@S(i, j),
i¼ 2, . . . , n, j¼ 1, . . . , 2i�1

y and k¼ 1, . . . ,N. For nota-

tional simplicity in the following, we assume that we have

only one call option. For the computation of @C(1,1)/
@S(i, j), 8 i, j we implement the following steps. We define

the triplet vector (see figure 2):

S
ðlÞ
i;j ¼ ½Sði; jÞ Sðiþ 1; 2jÞ Sðiþ 1; 2j� 1Þ�: ð16Þ

1st step: Compute the partial derivatives of the risk

neutral transition probabilities, @p(i, j)/@S(i, j), @p(i, j)/
@S(iþ 1, 2j) and @p(i, j)/@S(iþ 1, 2j�1) for i¼ 1, . . . , n�1,

and j¼ 1, . . . , 2i�1. We summarize the derivatives in

vector form (17):

r
S
ðlÞ
i;j
pði; jÞ �

@pði; jÞ=@Sði; jÞ

@pði; jÞ=@Sðiþ 1;2jÞ

@pði; jÞ=@Sðiþ 1;2j� 1Þ

2
664

3
775

¼
1

Sðiþ 1;2jÞ�Sðiþ 1;2j� 1Þ

eðrf��Þ�t

� pði; jÞ

� ð1� pði; jÞÞ

2
664

3
775:
ð17Þ

2nd step: Compute the partial derivatives @C(i, j)/@S(i, j),
for i¼ 2, . . . , n�1 and j¼ 1, . . . , 2i�1, @C(i, j)/@S(iþ1, 2j)

and @C(i, j)/@S(iþ1, 2j�1) for i=1, . . . , n�1, j=1,. . .2i�1.

We summarize the derivatives in vector form (18):

r
S
ðlÞ
i;j
Cði; jÞ �

@Cði; jÞ=@Sði; jÞ

@Cði; jÞ=@Sðiþ 1; 2jÞ

@Cði; jÞ=@Sðiþ 1; 2j� 1Þ

2
664

3
775

¼

�ði; jÞ

pði; jÞ �ðiþ 1; 2jÞ ��ði; jÞe��t
� �

e�rf�t

1� pði; jÞð Þ �ðiþ 1; 2j� 1Þ ��ði; jÞe��t
� �

e�rf�t

2
664

3
775;

ð18Þ

where

�ði, jÞ ¼
Cðiþ 1; 2jÞ � Cðiþ 1; 2j� 1Þ

Sðiþ 1; 2jÞ � Sðiþ 1; 2j� 1Þ
e���t

¼
@Cði; jÞ

@Sði; jÞ
� Delta Ratio: ð19Þ

3rd step: Compute the partial derivatives @C�(n, j)/

@S(n, j) for j¼ 1, . . . , 2n�1. They are given by the following

formula:

@C�ðn; jÞ

@Sðn; jÞ

¼

0; for Sðn; jÞ � K 1� z=2ð Þ;

1; for Sðn; jÞ � K 1þ z=2ð Þ;

1

z

Sðn; jÞ

K
� 1

� �
þ

z

2

� �
;

for K 1� z=2ð Þ < Sðn; jÞ

< K 1þ z=2ð Þ:

8>>><
>>>:

ð20Þ

4th step: Compute the partial derivatives @C(1, 1)/@S(i, j)
for i�3.

@Cð1; 1Þ

@Sði; jÞ
¼
Y	

of the probabilities on the path that take

us from node ð1; 1Þ to node ði� 1; kÞ



�
@Cði� 1; kÞ

@Sði; jÞ
e�ði�2Þrf�t;

k ¼
j=2; for even j;

ð jþ 1Þ=2; for odd j:

�
ð21Þ

For example,

@Cð1; 1Þ

@Sð4; 6Þ
¼ pð1; 1Þ 1� pð2; 2Þð Þ

@Cð3; 3Þ

@Sð4; 6Þ
e�2rf�t;

@Cð1; 1Þ

@Sð5; 3Þ
¼ 1� pð1; 1Þð Þ 1� pð2; 1Þð Þpð3; 1Þ

@Cð4; 2Þ

@Sð5; 3Þ
e�3rf�t:

5. Application using FTSE 100 options data

We use the daily closing prices of FTSE 100 call options
of January 2003 to December 2003 as reported by
LIFFE.z For the risk-free rate rf, we use nonlinear
cubic spline interpolation for matching each option
contract with a continuous interest rate that corresponds
to the option’s maturity, by utilizing the 1-month to
12-month LIBOR offer rates, collected from Datastream.

Our initial sample (for the 12-month period) consists of
99051 observations. We adopt the following filtering
rules.

(i) Eliminate calls for which the call price is greater
than the value of the underlying asset, i.e.CMkt4
S(1, 1). No observations are eliminated from this
rule.

(ii) Eliminate calls if the call price is less than its lower
bound, i.e. CMkt5S(1, 1)e��T

�Ke�rfT. This rule
eliminates 3206 observations.

(iii) Eliminate calls with time to maturity less than
6 days, i.e. T56. This rule eliminates 3109
observations.

(iv) Eliminate calls if their closing price is less
than 0.5 index points. This rule eliminates 11 373
observations.

(v) Eliminate calls for which the trading volume
is zero (since we want highly liquid options
for calibration). This rule eliminates 66 826
observations.

The final sample consists of 14 537 observations.
In the implementation, for �(1) we use the at-the-

money implied volatility given by LIFFE and for time to
maturity, T, we use the calendar days to maturity. Also,
since the underlying asset of the options on FTSE 100 is a

yWe do not calculate @Cð1; 1; kÞ=@Sð1; 1Þ since S(1, 1) is a known, fixed parameter, and thus does not take part in the optimization.
zFTSE 100 options are traded with expiries in March, June, September, and December. Additional serial contracts are introduced
so that options trade with expiries in each of the nearest 3 months.FTSE 100 options expire on the third Friday of the expiry month.
FTSE 100 option positions are marked-to-market daily based on the daily settlement price, which is determined by LIFFE and
confirmed by the Clearing House.
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futures contract, we make the standard assumption that
the dividend yield equals the risk free rate. The model is
applied every day, with n¼ 6 and also with n¼ 7. For
each implementation, the options used have the same
underlying asset and the same time to maturity.

The evidence for the behaviour of the futures volatility
in the literature is not clear. According to Samuelson
(1965) the volatility of futures price changes should
increase as the delivery date nears. However,
Bessembinder et al. (1996) find that the Samuelson
hypothesis is not supported for options on financial
futures. In order to choose the value of � that gives the
best feasible solution we make consecutive draws from
interval (5), which allows for both, positive and negative
values of �. The first value of � is that of its lower
bound. However, since dividend yield equals risk
free rate, instead of jrf� �j we set 1.E-8. The next
value of � equals the old plus an appropriately chosen
step size.

For brevity, we present results only for the first trading
day of each month of the year 2003 and only for n¼ 6
(table 1). Trading Day is the trading day of each contract,
Expiry is the expiration month of each contract, Asset is
the value of the underlying asset at the specified trading
day, N is the number of contracts used for the calibration
(the contracts that on the same trading day, have the same
underlying asset and the same expiration day), Error is the
value of the objective function, Penalty is the value of the
penalty term. Ideally we want the error function and the
penalty term to tend to zero.Maturity is the calendar days
until the maturity of the contract, and lambda is the value
of � that gives the best feasible solution. Also, we present
results only when the number of option contracts is
greater than 3, since with fewer options the distribution of
the underlying asset taken will not be reliable.y

The results obtained support our modelling approach.
As we can see in table 1, in all cases the solution strictly
satisfies the constraints since the penalty term equals zero.
Also, we see that in 67 out of 69 cases, i.e. in 97.1% of the
cases the error function tends to zero with an average
value of 2.34E-08. In the other 2 cases, where the error
function is greater than 1.E-4, the average error is 0.01.
Similar results were found for n¼ 7.

Even though the problem requires a constrained non-
convex optimization in 2(2n�1

�1) variables, the use of
efficient optimization algorithms prevents the calibration
of the model from becoming computationally too
intensive. On average, the computational time in minutes
required for each calibration had a mean (median) 1.10
(0.03) for n¼ 6 and 2.27 (0.08) for n¼ 7. The computer
used for the calibration of the model had the following
specifications: a Pentium 4 (3.2 GHz) CPU, Memory 1GB

(RAM), and Windows XP Professional operating system.
The codes were written in Matlab R2006a. The computa-
tional time needed would have decreased if the codes were
written in the C/Cþþ language.

When models provide an exact fit there is always the
concern of over-fitting. We checked the model for over-
fitting by pricing options with strikes in-between those
used for the optimization (calibration). Then we made
plots of the call prices (market prices and estimated from
the model) versus moneyness. Over-fitting was also
checked using a restricted sample consisting only of
options with moneyness between 0.8 and 1.1, since these
options are expected to be more liquid and more
accurately priced.z For brevity, we exhibit only the
plots for optimizations done in the first trading day of
June (middle of the year) for the two samples using a tree
with n¼ 6. As we see, for both samples the estimated call
values increase smoothly with increasing moneyness
without any evidence of over-fitting (see figure 4).
Similar results were obtained when a tree with n¼ 7 was
used for the calibration procedure.

As a further check for over-fitting we use only part of
the information to calibrate the tree and the other part to
check the model using n¼ 6, 7, 8. Specifically, we leave
out consecutively one of the N options at each time and
we calibrate our model with the remaining options. In
order to preserve the options’ moneyness range stability
and avoid problems of extrapolation, we do not remove
the options with the highest and lowest moneyness. Over-
fitting is checked like before using the full and the
restricted sample of options. For the calibration only
cases consisting of N48 were used. Results for the mean
and median absolute errors are given in table 2. We see
that the error (given an average contract size of 90 for the
full and 74.4 for the restricted sample) is small and rather
stable.x

Since implied volatility changes with strike and time to
maturity (volatility smile) the index should have a non-
lognormal distribution which implies that the log-returns
will deviate from normality. In order to see how realistic
is the distribution obtained from our model for year 2003,
we calculate the statistics of the 1-month log-returns
obtained from our model and compare them with the
historical 1-month log-returns for the year 2003 and the
years 2001–2005. Specifically, for each calibration (with
n¼ 6 and n¼ 7) for which the options maturity was
between 28 and 32 calendar days, we calculate the first
four moments (mean, variance, skewness and kurtosis).
Then, in order to get a feeling for the representative
statistics of 1-month log-returns we provide for each of
those moments the mean and the median. The statistics
for n¼ 6 are summarized in table 3. Similar statistics were

yIn table 1 we note that for the same contract (same underlying asset, same expiration) the number of contracts used in the model
changes across months. That is because some contracts were removed because of the filtering rules.
zThis sub-sample has a total of 13 696 observations for the year 2003.
xAlso, we compare our model (with respect to over-fitting) with the Black–Scholes model using the Whaley (1982) approach.
According to this approach we find the volatility that minimizes the sum of square differences of the Black–Scholes option prices
with their corresponding market prices using nonlinear minimization. Results show that the mean (median) absolute error using this
approach is 7.36 (5.94) for the full sample and 6.61 (5.60) for the restricted sample which are much higher than the errors obtained
using our model for n¼ 6, 7, 8.
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Table 1. Results for the application of the model on the 1st trading day of each month of the year 2003: Trading Day is the trading
day of each contract, Expiry is the expiration month of each contract, Asset is the value of the underlying asset at the specified
trading day, N is the number of contracts used for the calibration, Error is the value of the objective function, Penalty is the value of
the penalty term, Maturity is the calendar days until the maturity of the contract and lambda is the value of � that gives the best

feasible solution.

Trading day Expiry Asset N Error Penalty Maturity Lambda

01/02/2003 Jan-03 4014 17 7.933E-11 0 15 4.3429
01/02/2003 Feb-03 4019 19 4.2E-05 0 50 �1.3851
01/02/2003 Mar-03 3991 12 5.855E-12 0 78 �6.6823
01/02/2003 Jun-03 3995 11 2.721E-13 0 169 �0.3963
01/02/2003 Dec-03 3999 6 0.0208333 0 351 0.4096
02/03/2003 Feb-03 3675.5 16 7.254E-08 0 18 �3.9616
02/03/2003 Mar-03 3646 14 8.611E-11 0 46 �1.5180
02/03/2003 Apr-03 3644.5 15 2.722E-12 0 73 �6.4346
02/03/2003 May-03 3645 6 2.355E-14 0 102 �6.6918
02/03/2003 Jun-03 3647 7 2.196E-12 0 137 �4.9425
02/03/2003 Sep-03 3640 5 1.337E-14 0 228 �1.1252
02/03/2003 Dec-03 3653.5 7 5.859E-11 0 319 �0.9666
03/03/2003 Mar-03 3657 16 6.572E-13 0 18 �3.9616
03/03/2003 Apr-03 3655 13 2.573E-11 0 45 �1.5455
03/03/2003 May-03 3655 9 2.466E-12 0 74 �8.3274
03/03/2003 Jun-03 3655.5 7 9.825E-14 0 109 �6.2312
03/03/2003 Sep-03 3645 9 1.735E-12 0 200 �3.3359
04/01/2003 Apr-03 3684.5 16 4.548E-11 0 16 �5.0218
04/01/2003 May-03 3683.5 16 4.396E-12 0 45 �1.5510
04/01/2003 Jun-03 3686.5 10 2.096E-11 0 80 �5.0920
04/01/2003 Jul-03 3693 7 1.222E-11 0 108 �6.1873
04/01/2003 Sep-03 3676.5 5 4.563E-11 0 171 �3.9295
04/01/2003 Mar-04 3667 5 1.301E-11 0 352 �1.8670
05/01/2003 May-03 3874 15 8.178E-08 0 15 �4.1763
05/01/2003 Jun-03 3879 14 1.581E-11 0 50 �1.3588
05/01/2003 Jul-03 3885.5 10 2.535E-11 0 78 �8.6239
05/01/2003 Sep-03 3870.5 4 2.657E-12 0 141 �2.1062
05/01/2003 Mar-04 3869 5 2.448E-13 0 322 �1.8172
06/02/2003 Jun-03 4132 16 3.535E-09 0 18 �25.1320
06/02/2003 Jul-03 4138.5 9 6.685E-12 0 46 �1.4751
06/02/2003 Aug-03 4128.5 9 9.668E-13 0 74 �9.0523
06/02/2003 Sep-03 4124 11 5.437E-11 0 109 �6.0923
06/02/2003 Dec-03 4136.5 9 3.798E-14 0 200 �3.2689
06/02/2003 Jun-04 4124 5 1.825E-11 0 381 �1.6875
07/01/2003 Jul-03 3967 13 0.0007343 0 17 13.5874
07/01/2003 Aug-03 3958 12 4.422E-12 0 45 0.1871
07/01/2003 Sep-03 3955 12 3.807E-11 0 80 �1.5851
07/01/2003 Oct-03 3959 4 5.92E-14 0 108 �6.1578
07/01/2003 Dec-03 3964 11 1.544E-12 0 171 �1.8451
07/01/2003 Mar-04 3956 7 1.265E-13 0 261 �2.4906
08/01/2003 Aug-03 4091.5 11 7.597E-12 0 14 1.1396
08/01/2003 Sep-03 4088.5 14 7.022E-11 0 49 5.6305
08/01/2003 Oct-03 4094.5 4 5.318E-11 0 77 �8.6243
08/01/2003 Nov-03 4096.5 5 2.43E-13 0 112 �5.8741
08/01/2003 Dec-03 4100.5 5 1.804E-14 0 140 �0.4681
08/01/2003 Mar-04 4097 4 1.013E-12 0 230 �1.7231
08/01/2003 Jun-04 4098.5 6 7.7014E-12 0 321 0.9996
09/01/2003 Sep-03 4215 16 9.231E-11 0 18 �3.8161
09/01/2003 Oct-03 4222 9 4.986E-13 0 46 �1.4569
09/01/2003 Nov-03 4225 9 4.4323E-12 0 81 �8.1673
09/01/2003 Dec-03 4229 12 1.0014E-12 0 109 �0.6026
09/01/2003 Mar-04 4224.5 4 1.1111E-11 0 199 �32.5850
10/01/2003 Oct-03 4162.5 12 1.1715E-06 0 16 �4.3573
10/01/2003 Nov-03 4167 12 1.7641E-13 0 51 �1.3282
10/01/2003 Dec-03 4169.5 19 2.796E-12 0 79 �8.4832
10/01/2003 Jan-04 4173.5 5 5.4217E-13 0 107 �62.1642
10/01/2003 Mar-04 4162 8 1.1045E-11 0 169 �3.8885
10/01/2003 Jun-04 4171.5 5 1.0698E-13 0 260 �2.4977
11/03/2003 Nov-03 4330 12 9.9737E-12 0 18 26.2023
11/03/2003 Dec-03 4333 15 4.1511E-11 0 46 0.5538
11/03/2003 Jan-04 4344 9 3.2388E-12 0 74 �8.7229
11/03/2003 Feb-04 4354 7 2.0997E-12 0 109 �2.1552
11/03/2003 Mar-04 4329 7 2.6622E-13 0 136 �4.7931

(continued)
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Table 1. Continued.

Trading day Expiry Asset N Error Penalty Maturity Lambda

11/03/2003 Jun-04 4343.5 7 4.4587E-13 0 227 �28.4200
12/01/2003 Dec-03 4415.5 13 6.9791E-11 0 18 15.2128
12/01/2003 Jan-04 4426 10 2.5172E-13 0 46 �1.4475
12/01/2003 Feb-04 4433.5 13 3.7691E-12 0 81 �8.1270
12/01/2003 Mar-04 4410.5 10 5.3369E-12 0 108 �6.0614
12/01/2003 Jun-04 4423.5 4 9.9101E-16 0 199 �3.2410

Figure 4. Plots of the call prices (market and estimated) for the FTSE 100 index, for the 1st trading day of june 2003. S denotes the
value of the underlying asset and T the calendar days to maturity.

Implied non-recombining trees and calibration for the volatility smile 467
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found for n¼ 7. Liu et al. (2005) discuss the derivations of

historical, and implied real and risk-neutral distributions

for the FTSE 100 index. They demonstrate that the

needed adjustments to get the implied real variance,

skewness and kurtosis from the implied risk-neutral ones

are minimal. Thus, knowing that our implied risk-neutral

moments (beyond the mean) are very close to the implied
real ones, we can then compare them with the historical

ones (without expecting the two distributions to be

identical). As we would expect, the mean of the implied

risk-neutral distribution of log-returns differs from that of

the historical distribution. Also, as we see, both the

implied risk-neutral and the historical distribution deviate

from normality since they exhibit negative skewness and
(mostly) excess kurtosis. This is an indication that the

implied distribution is realistic.
In order to give further evidence for the implied

distributions obtained by our model, representative

implied distributions (histograms) for the 1-month log-

returns in June 2003 are shown in figure 5(a) (full sample)

and figure 5b (restricted sample) for n¼ 6 and n¼ 7. To

make the histograms of the implied distributions we make

use of the Pearson system of distributionsy as applied in

Matlab.z Using the first four moments of the data it is

easy to find in the Pearson system the distribution that

matches these moments and to generate a random sample

in order to produce a histogram corresponding to the

implied distribution. From the figures, it is obvious that

the implied distributions have negative skewness and

positive kurtosis which is consistent with historical data.

These figures are representative of the vast majority of

cases.x Another interesting thing we observe is that

distributions for n¼ 6 and n¼ 7 are practically indis-

tinguishable for both samples.

6. Conclusions

In most options markets, the implied Black–Scholes
volatilities vary with both strike and expiration, a
relationship commonly known as the volatility smile.
In this paper we capture the implied distribution from
option market data using a non-recombining (binary)
tree allowing the local volatility to be a function of the
underlying asset and of time. The problem under
consideration is a non-convex optimization problem
with linear constraints. We elaborate on the initial
guess for the volatility term structure, and use nonlinear
constrained optimization to minimize the least-squares
error function on market prices. Specifically we adopt a
penalty method and the optimization is implemented
using a quasi-Newton algorithm. Appropriate con-
straints allow us to maintain risk neutrality and to
prevent arbitrage opportunities. The proposed model
can accommodate European options with single matu-
rities and, with minor modifications, options with

Table 2. Mean and median absolute errors using our model for n¼ 6,7,8 and data from the full and the
restricted sample.

Absolute errors

Model Full sample Restricted sample

n ¼ 6 Mean 1.2458 1.1065
Median 0.9163 0.8709

n ¼ 7 Mean 1.1375 0.9792
Median 0.8005 0.6929

n ¼ 8 Mean 1.1286 0.9350
Median 0.7928 0.6886
Observations 446 405

Table 3. Implied risk-netural and historical statistics of the distribution of the FTSE 100 1-month log-returns.

Mean Variance Skewness Kurtosis Observations

Implied(2003, n¼ 6)
Mean �0.0024 0.0048 �0.6938 4.5075 58
Median �0.0013 0.0027 �0.6653 3.6405 58

Historical
2003 0.0106 0.0014 �0.6572 2.7689 12
2001–2005 �0.0021 0.0018 �1.1177 4.4749 59

yIn the Pearson system there is a family of distributions that includes a unique distribution corresponding to every valid
combination of mean, standard deviation, skewness and kurtosis.
zCopyright 2005 The MathWorks, Inc.
xIn rare exceptions only we have implied distributions close to normal or even leptokurtic.
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multiple maturities. Also, this method is flexible since it
applies to arbitrary underlying asset distributions, which

implies arbitrary local volatility distributions. Market

implied information embodied in the constructed tree
can help the pricing and hedging of exotic options and

of OTC options on the same underlying process. We test
our model using FTSE 100 options data. The results

obtained strongly support our modelling approach.
Pricing results are smooth without the presence of an

over-fitting problem, and the derived implied distribu-
tions are realistic. Also, the computational burden is not

a major issue.
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Appendix A: Feasibility of the initialized

non-recombining tree

We initialize the tree using the following volatility term

structure:

�ðiÞ ¼ �ð1Þe�ði�1Þ�t; � 2 R;

where i¼ 1, . . . , n. The feasibility of the initial tree

depends on the right choice of the local volatility term

structure; hence to obtain a feasible initial tree we must

find an interval with the appropriate values of �. In order

to preserve the risk neutrality at every time step, the

following constraints must be satisfied:

Sði; jÞeðrf��Þ�t � Sðiþ 1; 2jÞ; ðA1aÞ

Sði; jÞeðrf��Þ�t � Sðiþ 1; 2j� 1Þ: ðA1bÞ

Also,

Sðiþ 1; 2jÞ ¼ Sði; jÞuði; jÞ ¼ Sði; jÞe�ðiÞ
ffiffiffiffi
�t

p

; ðA2aÞ

Sðiþ 1; 2j� 1Þ ¼ Sði; jÞdði; jÞ ¼ Sði; jÞe��ðiÞ
ffiffiffiffi
�t

p

: ðA2bÞ

Substituting (A2a) and (A2b) to (A1a) and (A1b)
respectively, we get the following inequalities:

�ðiÞ � ðrf � �Þ
ffiffiffiffiffiffi
�t

p
; ðA3aÞ

�ðiÞ � �ðrf � �Þ
ffiffiffiffiffiffi
�t

p
: ðA3bÞ

Thus we have that

�ðiÞ � rf � �
�� �� ffiffiffiffiffiffi

�t
p

8i: ðA4Þ

For � � 0, � (i)¼ � (1)e�(i� 1)�t is strictly increasing. Since
(A4) holds for every i this means that

min �ðiÞ � rf � �
�� �� ffiffiffiffiffiffi

�t
p

or �ð1Þ � rf � �
�� �� ffiffiffiffiffiffi

�t
p

: ðA5Þ

The minimum value of � (i) is for i¼ 1 (�(1)) thus (A5) is
independent of �. Therefore, if � is positive there is no
upper bound for �.

For �50, � (i)¼ �(1)e�(i� 1)�t is strictly decreasing.
Since (A4) holds for every i this means that

min �ðiÞ � rf � �
�� �� ffiffiffiffiffiffi

�t
p

)

�ðnÞ � rf � �
�� �� ffiffiffiffiffiffi

�t
p

)

e�ðn�1Þ�t �
rf � �
�� �� ffiffiffiffiffiffi

�t
p

�ð1Þ
:

But (n� 1)�t¼T, thus,

� �
1

T
log

rf � �
�� �� ffiffiffiffiffiffi

�t
p

�ð1Þ

 !
: ðA6Þ

If we allow � to take both negative and positive values,
then � should belong in the interval,

� 2
1

T
log

rf � �
�� �� ffiffiffiffiffiffi

�t
p

�ð1Þ

 !
;þ1

" !
: ðA7Þ

Appendix B: Feasibility of the initialized non-recombin-

ing tree assuming time dependent rf, d and dt

We denote with rf (i) and �(i) the risk free rate and
dividend yield respectively between two consecutive time
steps, i.e. between time step i and iþ 1, i¼ 1, . . . , n� 1.
(See figure 6.)

We initialize the tree using the following volatility term
structure:

�ðiÞ ¼ �ð1Þe
�
Pi�1

j¼1

�tðjÞ

; � 2 R;

where i¼ 1, . . . , n. The feasibility of the initial tree
depends on the right choice of the local volatility term
structure; hence to obtain a feasible initial tree we must
find an interval with the appropriate values of �. In order
to preserve the risk neutrality at every time step, the
following constraints must be satisfied:

Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � Sðiþ 1; 2jÞ; ðB1aÞ

Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � Sðiþ 1; 2j� 1Þ: ðB1bÞ
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Also,

Sðiþ 1; 2jÞ ¼ Sði; jÞuði; jÞ ¼ Sði; jÞe�ðiÞ
ffiffiffiffi
�t

p
ðiÞ; ðB2aÞ

Sðiþ 1; 2j� 1Þ ¼ Sði; jÞdði; jÞ ¼ Sði; jÞe��ðiÞ
ffiffiffiffi
�t

p
ðiÞ ðB2bÞ

Substituting (B2a) and (B2b) to (B1a) and (B1b)

respectively we get the following inequalities:

�ðiÞ � ðrfðiÞ � �ðiÞÞ
ffiffiffiffiffiffiffiffiffiffi
�tðiÞ

p
; ðB3aÞ

�ðiÞ � �ðrfðiÞ � �ðiÞÞ
ffiffiffiffiffiffiffiffiffiffi
�tðiÞ

p
: ðB3bÞ

Thus we have that

�ðiÞ � rfðiÞ � �ðiÞ
�� �� ffiffiffiffiffiffiffiffiffiffi

�tðiÞ
p

8i: ðB4Þ

For � � 0, �ðiÞ ¼ �ð1Þ exp½�
Pi�1

j¼1 �tðjÞ� is strictly

increasing. Let �M ¼ max
i

rfðiÞ � �ðiÞ
�� �� ffiffiffiffiffiffiffiffiffiffi

�tðiÞ
p

: Then (B4)

holds for every i if

min
i

�ðiÞ � �M or �ð1Þ � �M: ðB5Þ

The minimum value of �(i) is for i¼1 (�(1)), thus (B5) is
independent of �. Therefore, if � is positive there is no

upper bound for �.
For �50, �ðiÞ ¼ �ð1Þ exp½�

Pi�1
j¼1 �tðjÞ� is strictly

decreasing. Let �m ¼ min
i

rfðiÞ � �ðiÞ
�� �� ffiffiffiffiffiffiffiffiffiffi

�tðiÞ
p

: Then (B4)

holds for every i if

min
i

�ðiÞ � �m;

�ðnÞ � �m;

�ð1Þe
�
Pn�1

j¼1

�tðjÞ

� �m:

But,
Pn�1

j¼1 �tð jÞ ¼ T, thus,

� �
1

T
log

�m
�ð1Þ

� �
: ðB6Þ

If we allow � to take both negative and positive values,
then � should belong to the interval,

� 2
1

T
log

�m
�ð1Þ

� �
;þ1

� �
: ðB7Þ

Appendix C: Formulas adjusted for time dependent rf,
d and �t

We denote with rf (i) and �(i) the risk free rate and
dividend yield respectively between two consecutive time
steps, i.e. between time step i and iþ 1, i¼ 1, . . . , n� 1 and
with r0f and �0 we denote the risk free rate and dividend
yield respectively from today until the maturity of the
option, i.e. from i¼ 1 to i¼ n.

If we allow rf, � and �t to be time dependent the
equations of the main text are replaced with the
following:

uði; jÞ ¼ e�ðiÞ
ffiffiffiffi
�t

p
ðiÞ ð3a0Þ

dði; jÞ ¼ e��ðiÞ
ffiffiffiffi
�t

p
ðiÞ ¼

1

uði; jÞ
; i¼ 1, . . . ,n� 1, j¼ 1, . . . , 2i�1

ð3b0Þ

� 2
1

T
log

�m
�ð1Þ

� �
;þ1

� �
; ð50Þ

where

�m ¼ min
i

rfðiÞ � �ðiÞ
�� �� ffiffiffiffiffiffiffiffiffiffi

�tðiÞ
p

:

pði; jÞ ¼
Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � Sðiþ 1; 2j� 1Þ

Sðiþ 1; 2jÞ � Sðiþ 1; 2j� 1Þ
;

i ¼ 1, . . . , n� 1; j ¼ 1, . . . , 2i�1; ð70Þ

Cði; jÞ ¼ pði; jÞCðiþ1;2jÞþð1�pði; jÞÞCðiþ1;2j�1Þð Þe�rfðiÞ�tðiÞ

i¼ n�1, . . . ,1; j¼ 1, . . . ,2i�1 ð9b0Þ

Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � Sðiþ 1; 2jÞ; i ¼ 1, . . . , n� 1;

j ¼ 1, . . . , 2i�1 ð10a0Þ

Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � Sðiþ 1; 2j� 1Þ i ¼ 1, . . . , n� 1;

j ¼ 1, . . . , 2i�1 ð10b0Þ

max Sð1; 1Þe��0T � Ke�r0
f
T; 0

� 
� CMod � Sð1; 1Þ; ð110Þ

g1ði; jÞ ¼ Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � Sðiþ 1; 2j� 1Þ � 0

i ¼ 1, . . . , n� 1; j ¼ 1, . . . , 2i�1; ð14a0Þ

g2ði; jÞ ¼ Sðiþ 1; 2jÞ � Sði; jÞeðrfðiÞ��ðiÞÞ�tðiÞ � 0

i ¼ 1, . . . , n� 1; j ¼ 1, . . . , 2i�1; ð14b0Þ

∆t(i )S (i, j )es(i)

∆t(i )S (i, j )e−s(i)

S (i, j)e(rf(i)−d(i ))∆t(i )

rf(i ), d (i )

S (i, j )

∆t (i )

Figure 6. A typical triplet in the initialization of the non-
recombining tree assuming rf, � and �t to be time dependent
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7 g3ðkÞ ¼ Sð1; 1Þ � CModðkÞ � 0; k ¼ 1, . . . ,N; ð14c0Þ

g4ðkÞ ¼ CModðkÞ �maxðSð1; 1Þe��0T � KðkÞe�r0
f
T; 0Þ � 0;

k ¼ 1, . . . ,N ð14d0Þ

r
SðlÞ
i;j
pði; jÞ �

@pði; jÞ=@Sði; jÞ

@pði; jÞ=@Sðiþ 1;2jÞ

@pði; jÞ=@Sðiþ 1;2j� 1Þ

2
664

3
775

¼
1

Sðiþ 1;2jÞ�Sðiþ 1;2j� 1Þ

eðrfðiÞ��ðiÞÞ�tðiÞ

� pði; jÞ

� ð1� pði; jÞÞ

2
664

3
775;

ð170Þ

r
S
ðlÞ
i;j
Cði; jÞ �

@Cði; jÞ=@Sði; jÞ

@Cði; jÞ=@Sðiþ 1;2jÞ

@Cði; jÞ=@Sðiþ 1;2j� 1Þ

2
664

3
775

¼

�ði; jÞ

pði; jÞ �ðiþ 1;2jÞ��ði; jÞe�ðiÞ�tðiÞ
� �

e�rfðiÞ�tðiÞ

ð1� pði; jÞÞð�ðiþ 1;2j� 1Þ

��ði; jÞe�ðiÞ�tðiÞÞe�rfðiÞ�tðiÞ

( )
2
666664

3
777775 ð180Þ

�ði; jÞ ¼
Cðiþ 1; 2jÞ � Cðiþ 1; 2j� 1Þ

Sðiþ 1; 2jÞ � Sðiþ 1; 2j� 1Þ
e��ðiÞ�tðiÞ

¼
@Cði; jÞ

@Sði; jÞ
� Delta Ratio; ð190Þ

@Cð1; 1Þ

@Sði; jÞ
¼
Y

fof the probabilities on the path that take

us from nodeð1; 1Þto nodeði� 1; kÞg

�
@Cði� 1; kÞ

@Sði; jÞ
e�
Pi�1

h¼2
rfðhÞ�tðhÞ

k ¼
j=2; for even j;

ð jþ 1Þ=2; for odd j:

�
ð210Þ
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