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ABSTRACT

We describe the complete company valuation algorithm whose individual com-

ponents were previously developed in deliverables D3.1, D3.2 and D3.3. In the

description given in this report, we concentrate on the mechanics and sequence

of actions that need to be performed in order to value a company, rather than on

how to perform an individual action, for which the reader is referred to the earlier

deliverables. This report also describes the file structures and data structures used

by this algorithm and gives computational results for 10 companies chosen from

the FTSE100 list. For the valuation of these companies, we have chosen 20 or so

financial factors (available as time series) for which a reasonable argument can be

made that they are of fundamental importance to company value. These factors

defined our state space.

∗Support for this work was provided by the IST Framework 5 Programme of the European
Union, Contract IST2000-29405, Eurosignal Project
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Although computing times are very long, company valuation is not an activity re-

quiring instant response (contrary to simple option pricing, for example) and the

algorithm is, at least from the computational point of view, practically acceptable.

The results obtained show that in the large majority of cases the computed com-

pany values are much lower than the market values. These may or may not be

”errors” but the differences may at least in part be due to the fact that insufficient

effort was spent by us on each company to ensure that an accurate estimate is pro-

duced of those parameters that affect real option value.

Keywords: Company valuation, Independent Components, Stochastic Modelling,

Dynamic Programming, Real Options
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1 Introduction

Deliverable D3.1 was concerned with the modelling of asset ‘values’, ‘prices’ or

‘returns’ using a suitable stochastic process and calibrating its parameters to fit

the historical asset time-series. Deliverable D3.2 was concerned with the repre-

sentation of the models described in D3.1 as multidimensional state-space transi-

tion graphs thus implementing in discrete time the stochastic process dynamics.

Deliverable D3.3 was concerned with two issues. Firstly, because the number

of ‘assets’ that are needed in order to value a company is large and the result-

ing state-space transition graph is huge, it was found necessary to try and reduce

this number. Deliverable D3.3 examined methods of achieving such a reduction

using techniques varying from the well-known Principal Components, to the less

well-known Independent Components, to new non-linear Independent Component

methods. Secondly, Deliverable D3.3 introduced a company valuation methodol-

ogy, based on option pricing principles, namely the ‘replication’ of a company’s

stochastic future cash-flows using other tradable assets. The resulting dynamic

programming recursions given in deliverable D3.3 are very much more complex

than the corresponding recursions for options, but have been demonstrated to be

do-able, albeit after a very long computing time.

The present report uses the results of the above deliverables to construct the final

algorithm developed during the EUROSIGNAL project for company valuation. It

consists of 3 parts.

Firstly, the complete algorithm is described in one place but with references to the

earlier deliverables.

Secondly, the computational implementation is discussed in terms of the data

structures used and the file structures employed for intermediate results.

Thirdly, computational results are given for the valuation of 10 FTSE100 compa-

nies on the London Stock Exchange, chosen from various sectors.

3



2 Algorithm description

2.1 Assumptions

To simplify the algorithm description we assume that the valuation of a company

is required for ”today”, a time that we index by 0. Forward times (periods) are

indexed1, 2, 3, . . .. Backward (historical) times are indexed−1,−2,−3, . . ..

As we see later, the main inputs to the algorithm are time series. Depending on

the time series, theperiod (i.e. the actual time duration between two consecutive

observations) can be one day, one month, one quarter, half a year or a year. Other

frequencies of observation, for example tick-by-tick data, are not supported. The

assumption is made that a month is composed of 21 working days and the number

of working days in a quarter, half-year and year are computed accordingly.

2.2 Time series

The actual time series required as inputs to the algorithm are discussed in a later

section. Here, we discuss some of the general issues that arise in the preprocessing

of the time series stored in the EUROSIGNAL database. This preprocessing is

performed by the initialization part of the algorithm and does not affect the data

in the database.

2.2.1 Missing data

It is quite often the case that time series of data downloaded from any database,

will have missing values on some dates. This is particularly true of time series of

daily data. Some of these missing values are legitimate; for example the value of

the Nikkei index on the 29 April, ”Greenery day”, is missing every year since this

is a Japanese holiday, whereas it may be a working day anywhere else. Approx-

imately 4% of daily data in financial databases is missing from these reasons. It

means, however, that if the G10 economies are examined together, in over 25%

of the days there is missing data for one country or another. Other data is missing

because it was not recorded for technical reasons, or recorded obviously wrongly

and has to be ignored.
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The preprocessor in our valuation algorithm fills in missing data in the time se-

ries obtained from the EUROSIGNAL database using an advanced EM algorithm

[Christodoulou 2002], [Georgikopoulos 2004]. Our improved algorithm consid-

ers the fact that financial returns are fat tailed and assumes a student-t joint prob-

ability density function (also an elliptic distribution) instead of a Gaussian joint

pdf. The theory of the EM algorithm extends seamlessly to this case. Also, this

advanced algorithm does not make the assumption that the covariances matrix of

the time series is constant. It can vary with time (but must be deterministic).

2.2.2 Change of period

This is a routine problem arising in many other applications involving time series.

If two or more time series are to be analysed together (in our case, for example, we

need to compute independent components of a set of time series) it is necessary

for all the time series in the set to have the same period. Thus, it is necessary to

be able to increase or decrease the period of a time series.

In our preprocessor, we take a very simple approach to increasing the frequency

of observations (i.e. decreasing the period) from, say, monthly to, say, daily.

This involves the fitting of the low-frequency observations with cubic splines

[Press et al. 2002] and using interpolation from these curves to fill the higher fre-

quency data points. Note that the precise details depend on the data represented

by the time series. For example if the series are monthly sales figures, the interpo-

lated points must be ”normalised” (i.e. divided by a number such that the sum of

the daily sales equals the monthly sales) whereas if the series are monthly closing

prices the interpolated points can be used directly.

The reverse procedure, namely decreasing the frequency of observations (i.e. in-

creasing the period) from, say, daily to quarterly, is done by simply averaging over

the larger period the smaller period observations. Once more the precise details

depend on the data represented by the time series.
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2.3 Input time series

The time series that are required as input to the company valuation algorithm are

obtained from the EUROSIGNAL database and are as follows: (Note that time

series of tradable assets are indicated.)

2.3.1 Macro-economic data

These time series represent the macro-economic factors that affect the company.

The are clearly outside the control of the company management. The correspond-

ing time series in the EUROSIGNAL database contain 10 years-worth of data.

They time series used are:

1. GDP growth (annualised %) in the countries where the company operates.

These time series are quarterly.

2. For each of the countries above, growth in the particular sector that the

company belongs to.

Time series are quarterly.

3. For each of the countries above, long-term interest rates.

The 15-year swap rate. Time series are daily.

4. For each of the countries above, short-term interest rates.

The 3-month Libor rate. Time series are daily.

5. For each of the countries above, FX rate. (Tradable)

Time series are daily.

6. For each of the countries above, inflation rate.

Time series are quarterly.

7. The price of oil - Brent 1-month. (Tradable)

Time series are daily.

8. The price of any other commodity which is relevant to the company’s busi-

ness. (e.g. wheat, or coffee for Nestle) (Tradable)

Time series are daily.
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2.3.2 Financial assets

These are tradeable assets. The time series used are:

1. For each of the countries where the company operates, the yields on the 2-

year Government bond. (Tradable)

Time series are daily.

2. For each of the countries where the company operates, the yields on the 10-

year Government bond. (Tradable)

Time series are daily.

3. For each of the countries where the company operates, the main stock index

on the relevant exchange. (Tradable)

Time series are daily.

4. For each of the countries where the company operates, the stock index of the

sector in which the company belongs. (Note: The EUROSIGNAL database

does not have this information. However, it contains information on the sec-

tor to which each company belongs. The preprocessor of the company val-

uation algorithm automatically constructs an equally-weighted index from

the stock prices of the companies in this sectorexcludingthe company be-

ing valued.)

Time constructed time series are daily.

2.3.3 Company-specific data

The time series used are:

1. Company sales.

The time series is annual, semi-annual, quarterly and sometimes monthly.

2. Book value of equity.

The time series is annual, semi-annual, or quarterly.

3. Dividend payments.

The time series is semiannual.
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4. R&D, (and whether it is capitalized or written off)

The time series is semiannual.

5. EBIT (earnings before interest and taxes.)

The time series is semiannual.

6. EBITDA (earnings before interest, taxes, depreciation and amortization.)

The time series is semiannual.

7. Share price.

The time series is daily.

2.4 Processing the input time series

A minimum of 18 time series is expected as input (see above) plus additional time

series for whatever commodities are thought to affect the company valuation.

Step 1. Fill-in missing data

The set of time series is partitioned into subsets so that all time series in a given

subset have the same period. We consider each subset in turn and any missing

data in any of the time series in the subset is filled-in by applying the enhanced

EM algorithm described earlier.

Step 2. Setting a common period

In order to use the time series as a single set, they have to be converted to a com-

mon period. We arbitrarily chose to convert all series to monthly observations

using the interpolation and averaging procedures described earlier.

Step 3. Dimensionality reduction

We need to reduce the dimensionality of the problem so that the 20 or so time se-

ries are represented by a smaller number of independent components. We used

the Principal and Independent Component procedures described in deliverable

D3.3 to achieve this. By experimentation we found that 7 independent compo-

nents combined in a non-linear manner using a Neural Network, were sufficient

for the accuracy required. Although the required accuracy is clearly a subjective
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judgement, it seems to be reasonable. For example, the RMS error in the recon-

struction approximation of the 19 time series used for ICI was less than 4%. The

Neural Network used for this purpose used two hidden layers. The input layer

had 7 neurons corresponding to the 7 independent components. The output layer

had 19 neurons corresponding to the number of input time series. The first hid-

den layer had 5 neurons and the second hidden layer had 3 neurons. There is no

theory to give guidance for these numbers; rather they are the result of a large

number of experiments to gain some insight into the size of Neural Network re-

quired. The Neural Network was trained by using the non-linear optimisation al-

gorithm BFGS [Fletcher 1987] with an improved line-search technique developed

in [Charalambous 1991].

2.5 Modelling the Independent Components

Deliverables D3.1 and D3.3 described various stochastic processes that can be

used to model financial asset dynamics or the dynamics of independent compo-

nents derived from financial data.

Step 4. Fitting stochastic dynamics

In our final algorithm we used just two models (see deliverable D3.3) namely

GBM+Jumps+GARCH and MR+Jumps+GARCH to model the independent com-

ponents derived in step 3 above. We used the calibration procedure in [Krkic and Christofides, 2003]

and chosen the best model (of the two models above) depending on the value of

the Akaike criterion.

2.6 Constructing a state-space graph

Deliverable D3.2 described how to construct an arbitrage-free state transition

graph from the stochastic modelling equations. In this case we are constructing

the graph to represent the evolution of independent components (rather than assets

directly) and we need to ensure that thetradableassets do not allow any arbitrage

to exist. This is done in an exactly analogous way as described in deliverable D3.2

namely checking each possible (statistically equivalent) evolution at each vertex

for the existence of arbitrage and choosing an evolution which is arbitrage-free.
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At this step we also need to consider the single-path predictions of the forecasts

that are the results of the macro-economic model and the results of the data-mining

model. Let us call the assets modelled by the above two methods ’exogenous’. At

some timet in the future the state transition graph contains a large number of ver-

tices (states) and at each one of these vertices there is a corresponding value for

each asset (derived from the values of the independent components at that vertex).

For an exogenous asset, the expected value at timet is given by the predictions

of the macro-economic or data-mining model. If the mean of an exogenous asset

at timet computed from the verticesvi ∈ Vt of the state space graph is different

from that of the two external models, then the values of this asset at each of the

verticesVt is increased/decreased by the same amountδ to make the two means

the same. Note that if the exogenous asset is tradeable, the above adjustment may

re-introduce arbitrage. This is not a shortcoming, only an indication that an ‘un-

reasonable’ prediction cannot be accommodated. In any case, in our algorithm

only non-tradeable (GDP growth from the macro-economic model and company

sales from data-mining) assets are exogenous so arbitrage complications do not

arise.

Step 5.Constructing a state-space graph

Construct the arbitrage-free state transition graph representation of the stochas-

tic equations of the independent components. Modify the values of the exoge-

nously defined variables so that their expected future values agree with the macro-

economic/data-mining model forecasts.

2.7 Additional inputs: Discretionary expenditure

If we ignore the additional value resulting from exercising real options that may

exist, no additional inputs are required from the user. (Note that algorithmic issues

such as the number of time-steps used in the state transition graph, the maximum

number of vertices in this graph, etc. are already determined by experimentation

and set automatically without user input.) However, if the real options are consid-

ered (and in some cases - see computational results- they make a lot of difference)

then the following data is also required regarding the effects of what, in deliver-

able D3.3, has been calleddiscretionary expenditure.
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In deliverable D3.3 we considered (and gave a Dynamic Programming recursion

for) discretionary expenditure such as advertising, where for each additional unit

of this expenditure there is a corresponding increase in sales and earnings from

the next period onwards. In that case we need an expression for this relationship

and we assume a linear relationship obtained from performing linear regression

on past data of the company. Theslopeandintercept parameters then define this

relationship.

An alternative type of discretionary expenditure is R&D. In this case R&D ei-

ther succeeds in delivering a blockbuster product (as in the case of a major new

drug for a pharmaceutical company), or fails to do so. In the latter case the com-

pany sales/earnings etc. remain the same at the existing vertices of the state tran-

sition graph (other than, of course, the money wasted on R&D which must be

subtracted from the earnings). Success in R&D is represented by an additional

arc (with a small transition probability) leading from the vertex where the R&D

has succeeded to a corresponding vertex in a ”higher/parallel” graph where the

company sales/profits are increased by some multiplier. Figure 1 illustrates the

concept. The concept can be easily generalised so that success does not arise sud-

denly in a single step but is a result of a multistage process (as for example in the

case of drug approval). In that case a third, fourth, etc. parallel graphs are defined

with transitions only between a graph at layer` and one at layer̀ + 1. Sales,

earnings etc. can remain the same at vertices of all graphs other than the topmost

graph that represent final R&D success.

In our case we only considered a single-stage R&D success/failure with a given

budget that can be spent all in one go (or not at all) at any vertex of the graph.

Again only two pieces of data need to be specified:

(1) Theprobability of success. (All other transition probabilities are adjusted

downwards accordingly and equally.)

(2) Themultiplier factor for company sales and earnings in case of success.

The values of the probability parameter can be estimated from examining large

R&D projects in the sector the company belongs to. The effect of a successful
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Figure 1: Effect of successful R&D expenditure

R&D project has to be estimated by regression. In deliverable D3.3 the DP re-

cursion for valuation with discretionary expenditure of the ”advertising” type is

given. A similar DP recursion applies for ”R&D” type expenditure.

2.8 Computing cash flows

Normal cash flows (with no discretionary expenditure) is computed as:

Step 6. Computing cash flows

At each vertex of the state transition graph we reconstruct from the independent

components the company data at that state. We can then compute the earnings of

the company at that vertex. Since the effects of R&D are fully accounted for by a

possible increase in the cash flows, R&D cannot be capitalised as well; hence we

have to subtract R&D expenditure from the book value if it has been capitalised.

Note that although only earnings are computed for the vertices of the graph, it
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does not mean that the rest of the company data is therefore irrelevant. Indeed this

additional information may be vital. The independent components from which

earnings are computed are affected byall time series mentioned earlier and are

computed so as represent well all the company data. A completely different model

would result if only company earnings were considered for the company data.

Increases due to discretionary expenditure are taken care of automatically by the

DP recursion (See step 7.) using the two parameters mentioned in the previous

section.

2.9 The DP recursion

The state transition graph with company cash flows occurring at every vertex and

transition probabilities on every arc is now complete. The valuation recursion now

needs to be solved.Step 7: Solving the DP

Solve the company valuation DP recursion as given in deliverable D3.3. The

answer to this Dynamic Program is the value of the company.

3 The data structures used in the algorithm

The algorithm is written in C++ and makes extensive use of object orientation.

It is a well-documented and maintainable code that runs equally well in Linux

or windows. Its only user interface is the one provided by the EUROSIGNAL

website. Simple data structures were used in all stages of the algorithm.

3.1 File structures

All files are stored as comma separated (sequential) files (csv files). This means

that all files (from the large files containing daily time series to very small files

containing, for example, the arc weights of the fully trained neural network) can

be fully formatted, viewed and edited in Excel. Also, for the files containing time

series, the first two rows are reserved for titles, so data start from the 3rd row. For

these files the first column contains the date (in any format) of the observation. In

the interest of consistency, even for the files that do not contain time series, the

first two rows and first column are left blank.
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Data read from the database are immediately written onto file in the csv format

mentioned above. This means that the algorithm can also be executed in a stand-

alone batch mode if supplied with the required time series in an Excel worksheet.

A large number of intermediate files are generated by default. These include files

containing the time series with a common period and filled missing values, the

Principal and independent components time series, the trained neural network, the

calibrated parameters of the chosen stochastic processes, the full state transition

graph, and the final answers including some sensitivity results that are obtained

with no additional computational effort during the solution of the DP recursion.

3.2 The state transition graph structure

The data structure used for the state transition graph is the ”forward star” struc-

ture. This is composed of three lists.

The first list is an arc list, as long as the number of arcs. It groups together all

arcs emanating out of vertex 1, followed by all the arcs emanating out of vertex 2,

etc. It stores in each arc position the number of the vertex which is the terminal

vertex of that arc.

The second list is also an arc list. A property of the arc (for example its tran-

sition probability) is held in the corresponding arc position.

The third list is a vertex list, as long as the number of vertices. In a vertex

position it stores a pointer pointing to the arc position of the first arc emanating

from that vertex.

For example, if the pointer of vertexi points to arc positionA and the pointer

of vertexi + 1 points to arc positionB, then all arcsA,A + 1, A + 2, . . . , B − 1

emanate from vertexi. If the entry in the first and second arc lists for arcA, say,

arej, andq respectively, then arcA is the arc(i, j) and its transition probability

is q.
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The forward star is a simple graph data structure that is suitable only for prob-

lems where the graph will be constructed and will not be modified thereafter. This

is the case with our existing algorithm.

3.3 The DP tables

The DP tables for the recursive functionfi(w, a) can be implemented as 3-dimensional

tables. This, however, is very wasteful in storage since at any one time only the

verticesvj ∈ V out
j are needed to computefi(w, a). Thus the valuesfi(w, a) need

to be held for every(w, a) not for all vertices, but only for vertices at one time

period (actually slightly more).

4 Computational results

We computed the value of 10 companies taken from the FTSE100 list. Before

performing each valuation we estimated the two parameters required for the dis-

cretionary expenditure. We did not expend sufficient effort to get good values

for these estimates which may partly explain the ”errors” between our computed

company values and the market values.

The results are shown in table 1. In almost every case our company valuation

is well below the market value of these companies.

The computing times shown in the table are hours:minutes:seconds on a 3.2 Ghz

Intel Pentium 4 processor running windows XP and using the Visual C++ Version

7.0 compiler.
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Company Computed value Computing time Market value
excl. RO incl. RO excl. RO incl. RO

BAE Sys 133.5 133.5 1:06:33 3:11:09 196.25

Barclays 384.1 390.2 0:54:04 5:43:25 491.00

HSBC 646.0 660.6 0:58:53 5:28:22 794.00

ICI 174.4 201.0 1:10:45 6:08:02 199.75

Unilever 382.2 382.2 0:55:13 2:55:23 521.00

Reuters 270.7 291.8 1:03:09 4:42:28 340.75

BP 354.8 431.3 0:49:44 6:28:12 487.25

AstraZen 1470.9 1921.4 0:57:36 4:55:43 2626.00

mmO2 48.6 59.3 1:10:44 4:40:19 92.50

Vodafone 112.8 145.6 1:00:39 6:26:51 135.25

Table 1: Computational results from the valuation of ten companies from the
FTSE100 on 11 May 2004.
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