Notes on NN for forecasting

Nicos Christofides

nicos.christofides@gmail.com

October 2009

1 Introduction

The NN is represented by a grapi{V, E') whereV is a set of vertices (neurons) and
E a set of arcs (signal-arcg) is a multi-stage graph with stages= 0, ..., p. Stage

p contains the subséi, of vertices, s/ = V,UV; U...UV;. The setd), andV;; are
referred to as thnputandoutputvertices of the NN, respectively.

An arc connects a vertex, say € V,_i, to a vertex, say; € V), and is written as
(vi,v;). For any giverw;, the set of all vertices; with arcs(v;,v;) is written asV;"
(with corresponding arcEj-”) and the set of all vertices, € V41 with arcs(v;, vi)

is written asV** (with corresponding arcE?").

With each vertexy; ¢ V; is associated a weight;, and with each arcv;, v;) is
associated a weight;;. TheNN input signalsare allocated as the output signals from
the verticed;y. In general, each vertex € V produces an output signg) which is
transmitted to all vertices; € V;** along the arc$v;, v;). The net input signal into a
vertexv;, say, is then

T; =u; + Z Wi Yi (1)

v GVf"

1.1 The transfer function

With each vertex; ¢ 1} is associated &ansfer functionf;(.) which takes as pa-
rameter the input; and produces the output signgl = f;(x;). Normally, the same
function f(.) is used for all vertices and this function is nonlinear, often with its value
bounded from above and belov@ur code uses thiegistic functionf(z) = w%
monotonically increasing from the value 0 (as— —oo) to the value 1 (ag — +o0)
with the value 1/2 at = 0. Other transfer functions (egunh z, bounded between -1
and +1) may also be used).

2 The training set

Assume that:

e The topology of the grapl’ is given, with|V;| = n inputs and V| = m out-
puts. For example we may specify= 3 for a 3-period NN with V|, [V1], | V2|, | V3]
having the values 10, 4, 2, 2, respectively; namely with 10 inputs, two ‘hidden
layers’ with 4 and 2 vertices (neurons) respectively, and 2 outputs.

e An ordered set of;,,i, n-dimensional vectora ., 7 =1, ..., T qin represent-
ing input training instancess given. The value of thg!” component of vector
«, atinstancer is written asa;-. We will not discuss the choice of inputs here
other than to say that in version 1 we are using a vector of dimemsier 9.

e An ordered set of;;,;, m-dimensional vectorg_, 7 = 1,..., 7yrqin repre-
sentingtarget training instancess also given. The value of thg” component
of vectorgr at instancer is written asf3;-. We will not discuss the choice of
targets here other than to say that in version 1 we are using a vector of dimension
m = 1 and that the corresponding) , is the return of the assetlative to the
average return of it's sector.

2.1 Preprocessing the training set

The list of pairs of input/target training instances above is jointly referred to as the
training set In version 1, the NN input training instances (namely) are normalized

to have mean 0 and varianceAs usual this meansy;, < o~ — p; (Wherep; is the

mean value ofy;, over all7) followed by o, «— «;,/0; (Whereo; is the standard
deviation of the resultingy;, over all 7). The normalization parameters ando;

are stored on file so they are applied to preprocessing other NN input instances in the
future.

As mentioned earlier these NN input training instances are allocated as the output sig-
nals fromuv; € V4. Therefore for vertex; and instance, we definey;, asa;.

In version 1, the NN target training instances (namgjy) are standardized to lie
between 0 and 1As usual this meansg;. — (8;; — 8))/(8)' — B}), wheres}

is the maximum value of;. over allT andﬁjv is the minimum value ofj;, over all

7. The standardization paramete?rﬁ and ﬂjA are stored on file so they are applied in
the future (in reverse order) to NN output instances to convert the output to a forecast
in the original target units. (Note: Because the logistic function reaches 0 and 1 only
asymptotically, it is preferable to increaﬁ? by a factorp > 1 and reduceﬁjv by a
factor 1/p, prior to standardization. This ensures that the actual maximum and mini-
mum targets are achievable with finite inputs into the output vertices.)

In version 1, the value of p is taken as 1.05

2.2 The NN objective function

When an input vector instanee. is presented to the network, a vector output instance
[results. We want_ to be as close to the targgt as possible, for all instances
T=1,..., Ftrain. If || QT — @T | is some measure of the error between the target
and NN output, then we want to find valueswafandw;; (vertex and arc weights,

respectively) such that the total erroe= X7 | B_— ¢_ |l is minimized. The er-

=1
. Ttrain 2
ror measure most often used is the mean-square error (MSE)} "7 (8_— ¢)

which is convenient for computing the derivatives, etc. needed in the conjugate gradi-
ent techniques used in the optimization algorithm.

In our code we use the MSE measure to produce an initial locally MSE-optimal so-
lution, but then change the objective tgmofitability index (Pl)and perform a local
second-stage optimization - with this second objective - from there (see bdiaw).

the rest of this note, when we refer to ‘performance’, we mean w.r.t. the PI.

3 The training process

3.1 Overfitting

Itis easy to see, that for a NN = (V, E) there ardV| — |V} vertex weights andE|

arc weights to determine. For most practical-size NNs, it means that there is a large
number of variables to optimize. A rule of thumb is for the number of training instances
Turain 10 D 510 10 times the number of free variables. Nevertheless, when using a NN
for forecasting financial time series (which always contain a lot of noise) it is easy
for the optimization to fit not only the main characteristics of the time series, but also
the noise. Thioverfittinginvariably leads to ‘good’ performance for the training set,
but much worse performance in forecasting unseen future data. Three techniques can
be used to reduce the risk of overtraining whilst still achieving ‘reasonable’ in-sample
performance and, hopefully, improve the out-of-sample performance. (What is meant
by ‘reasonable’ is a very gray area and in our code we avoid having to decide on this
issue.)

e Small NN: The size of the NN is kept to the minimum possible, consistent
with reasonable performance. There is no theoretical reason to choose a NN
of a given size (although some bounds are derivable from ‘immersing’ the time
series into a multidimensional space and using the box-counting algorithm).
our code we simply train different size NNs, and choose the ‘béSée below.)

e Reducing the number of inputs: Striving for variable reduction also
implies using as small a numbet)(of NN inputs as possible. Obviously, this

also leads to a smaller NN. Reducing the number of NN inputs can be achieved
by extracting from a potentially large input set a smaller subset as follows:

— Use as NN inputs a (smaller) number of principal/independent components
of the potential input time series, or

— Use as NN inputs the smallest possible subset of the potential input set,
consistent with reasonable performance. This is what we use in our case.
It is not automated in the code. The user must try different combinations
of the inputs. The intention (for version 2.0) is to collect more potential
inputs (currently we have 19)and for each asset, do a single run on a
supercomputer to try every combination of those. For a given asset, the set
of inputs will then be fixed ‘forever’. (As mentioned earlier, in version 1.0
all 19 inputs are used.

e Validation set: Using a separate ‘validation’ technique to prematurely
terminate the training processhis is used in our code and described separately
below.

3.2 Validation

The conjugate gradient algorithm used to optimize the NN weights, is an iterative pro-
cedure that generates a sequence of weight ‘solutions’ from the initighone)° (see
below) to the locally optimal onéu, w)? in § steps. The corresponding values of the
NN objective function (error) arey, ... This sequence decreases
monotonically.

s
Rirains) Ptrain:

Now consider another set of, sa¥,.;;q input/target instances and call this thali-

dation set. When the above solution sequence is evaluated on the validation set, the
values of the NN objective function (error) at@,,.,. 22 i - - -, Z501iq» @nd gener-

ally this sequence is not monotonically decreasitigeneralizationis a loose term

used in the NN literature to measure the propensity of a NN trained on some data,
to also perform well on other unseen data of the same problem. Forecasting, clearly
needs good generalization, and a measure of this is the correlation between the two
sequences) .zt o 2 @NA 20 2t 28 . Let § be the value

of s for which 27 ;.. is minimum. In our code we compute the correlation coefficient
between the above two subsequences ffams. If the correlation is positive, we drop

the first entry from the subsequences and repeat, if the correlation is negative we drop
the last entry from the subsequences and repeat. In all cases, we stop when not enough
entries remain in the subsequences to compute the correlation (say 5 entries) and de-

clare the first entry of the remaining subsequences the ‘best’ optimization itesation

1Yazid has provided another 7

The weights at that iteratiofu, w)*~ are the final NN weights.

3.3 Testing

Once a NN is calibrated it must be tested on totally-unused data call¢sstiset. This
set consists of, say,.s; input/target instances. The generated NNs are then ordered
for generalization depending only on their performance on the test set.

4 Generating a population of NNs

4.1 The modelling set

The training, validation and test sets, are referred to jointly asnbeellingset. The
choice of the modelling set is vital for the performance of a NN. A number of choices
have to be made, and these are:

The number;, qin, Tvalid, Ttest Of INStances to useén our code we use a total of
400 instances, divided into training, validation and testing as mentioned below.

The numbem = |V;] of inputs to use for each input instande. our code we
use 19.

The numbern = |Vj| of targets to use for each target instaniceour code we
use 1.

The dates to be used for collecting the modelling set. These need not be consec-
utive datesln our code we use the following procedure:

— Select 400 consecutive days finishing today (say tige

— Construct the 400 target instances, and the corresponding 400 input in-

stances: Note that if we are forecastiglays ahead, the last date for an
input instance ig, — d. Also note that the input instance for, say, tim@

order to forecast for time+ d) uses information from, sayy,;s; days pre-
ceeding timet. For example, average returns over the 20 days preceeding
time ¢ may be used as an input at tirhen which caseiy,;s; = 20. In our
codedy;s; = 100, because we use a rolling-window of the previous 100
days to compute Independent Components (and hence residuals) for time
t.

Of the 400 instances above, we allocate 200 for training, 100 for validation,
100 for testing.

Training, validation and test subsets of the modelling set are generated by
randomly selecting the required number of instances in each case, except
that the testing set includes the last (i.e. most recent) 10day9, to —
8,...,to. These last 10 days are called thserve

4.2 The NN generation process
Once the modelling set is selected:

1. Different partitions of the modelling set into training, validation and test subsets
are produced as mentioned above.

2. Different topologies for the NN models to be created are proposed.

3. For each NN topology, different starting points for the NN weights are con-
sidered. Because weight optimization only leads to a local optimum, different
starting points lead to different local optima.

By considering different combinations of the above 3 choices, we generate a population
of trained NNs. All NNs are evaluated on the test set. Those with negative Pl are
eliminated and the rest are placed imadel poal In our model we take 2 choices for
item 1 above, 4 choices for item 2 and 3 choices for item 3, leading to a population of
24 NNs, the ones with positive Pl forming the model pool.

4.3 NN model use at an arbitrary datet

For a given asset, the NN models in the model pool were produced and evaluated at
a given timet,. They are to be used from this time until some other future titng

when it is decided to recreate the models. Although the NNs were created to have good
performance and generalization at timetheir performance at timg to < ¢t < teng

must be re-evaluated at each timthat a forecast is needed. The re-evaluation is as
follows:

e Generate the input and target instances forithg times preceeding timg and
refer to these instances by the indext = 1, for timet — 7.t + 1; k = 2, for
timet — 7.4 + 2, ..., andk = k for time+.

e For each NN (sayVQV;) in the model pool, compute its performance using the
abovek input and target instances. Temporarily eliminate from the model pool
any NN with negative performance, and fete the size of the resulting pool.

4.3.1 A single forecasting model

In version 1.0 a single forecast is produced by averaging the forecasts/oRiks in
the model pool. We compute the forecast return aad it's variance a8?2. In version
2.0 we will do the following:

Let ¢, (k) be the profit of NN, at instancek, and leté, be it's expected profit. Le

be the covariance betweepandc,, computed over the daily forecasted profits for the

k instances. We want to produce a forecast by weighing the forecaéVpfwith &,.
The best forecast is then given by the solution to:

Q%= min £rQ¢

1
s.t. ZE:l fg =1
¢ _
D1 &l > 2

where@ = [qu] is the covariance matrix and is a forecasted value we want to
achieve. For feasibility, any numbefin,[c,] < z < maxy[c,] will do, but we will

setz = % Zﬁ;l ¢;. The above solution then produces a return above the average of
forecasted expected returns, whilst minimizing the forecasted variance of those returns.
The value of™ producing the minimum above is used to generate the best single fore-
cast. The corresponding value ofs the forecasted return atf the variance of that
forecast.

5 A forecaster’s performance index (PI)

We use MSE as the objective function of a NN and compute vertex and arc weights
to minimize MSE obtaining an ‘optimal’ solutiofu, w)*. Following this initial opti-
mization we perform a second-stage optimization as follows.

Imagine a small hypercube of dimensign, w)| centered on pointu, w)*. (The size

of this hypercube is decided below.)

- Generate a numbérof maximally-dispersed point-samples in the hypercube.

- At each one of these points (plus the centre point) evaluate a more complex but more
realistic objective function called thHeerformance IndefPl).

- Choose for the NN weights that point which maximizes the PI.

Here we briefly describe the Pl we use.

As mentioned earlier, in version 1 we use just one output vertex, and as a result we will
drop the vertex’s index when no confusion arises. For a given asset, we compute the
target (which is the asset return relative to that of the corresponding sector) over the
instances described in the previous section, and group the values into quargiées
(notdiscrete sets))1, Q2, Q3, Q4 counting from the top.

The following items affect the computation of the Pl for a given NN forecasting model.

1. The closeness of the forecast of an asset’'s return to the
target. We use the mean absolute deviation (MAD) measure
My, =| Bx — ¢x | for closeness.

2. The probability of 'acting’ (ie including the asset in
the portfolio, long or short) based on the forecast. Let

Ny be the total number of assets in the problem ahte the number we wish

to include (long or short) in the portfolio. For the purposes of computing the PI,
we take this probability ag, = 0.2 if o € Q2 or Q3 andg;, = 0.81 if

o € Q1 or Q4.

3. The result if the forecast is acted upon. This is computed
as follows:

e Let L > S be two real numbers representing the ‘utility’ of a large or small
profit respectively. Also leh > 1 so that—ALand— \S be the ‘utility’
of a large or small loss respectively. We use the following procedure to
compute the utility of a forecast that is acted upon:

Upx = L; if Bre@Ql & o¢pr€e@QlUQ2, or
Ore@4 & ¢pe@Q4iUQ3

= 5 if Bre@2 & o¢p€@QlUQ2 or
O €EQR3 & ¢r€4UQ3

= =AL; if Be@Ql & ¢pe@4iUQ3, or
OreRQ4 & ¢preQlUQ2

= =AS; if Bre@Q2 & ¢LeQ4aUQ3, or
OkeR3 & ¢pre@QlUQ2

4. The opportunity loss if the forecast is not acted upon.
On the basis that missing an ‘opportunity’ is not as important as an actual gain
or loss, we defing < 1 and define the opportunity loss ag:.Uy,

Thus, the PI (to be maximized) is computed as

k
Pl=""[—7.My + (1 — 1) Ur{ax — (1 — q&).11}]
k=1

In our code we use the following parameters (with no experimentation}. 2, S =

03, A =2, 4 = 0.1, v = 0.3. Note that increasing puts more emphasis on
the statistical accuracy of the forecast and less on it’'s consequences, and inckeasing
increases the risk aversion.

6 Initialization of NN weights

Since the transfer functions for the vertices in peribds, . . . , p are all logistic, they
exhibit saturation of the output when the input signal is much greater than 1. What is
therefore required, is for the initial random initialization of the weights to lead to vertex
input signals with expected value equal to zero and variance of approximately 1.

6.1 For the first period

Equation?? gives the total input signal into a vertex. Let us assume that the arc
weightsw;; for the arcs(v;, v;),v; € Vo,v; € V; are generated from a uniform dis-
tribution in the rangé—a, a]. We will determine a suitable value far It is clear that
the expected value af; is O regardless of the value af The variance of thev;; is
a?/3, so the variance of ; is approximately:.a?/3. Setting this to 1, so as to satisfy

the above requirement, leadsde= \/%

The vertex weights:; for the verticesv; € Vi, can be set to zero. However, it is
better for the conjugate gradient algorithm used for training, not to have equal weights.
Itis, therefore, better to generate therandomly from the uniform distributiop-b, b]
whereb < a. In version 1, we generate the weights as described above with/10.

6.2 For all other periods

Referring to equatior?? again, and considering vertices € V, andv; € Vpiq,
1 < p < p, we know that the value af; has expected value 0.5. The variance of,
say,\2. Becausey; lies in the rang®.5 & 0.5, A cannot be greater thans. Because
the variance of the input to; was required to be equal to 1, the outputvaries (ap-
proximately) in the rang8.5 + 0.25 and\ =~ 0(0.25).

Let us assume that the arc weights; for the arcs(v;,v;) : v; € V,, v; € Vi,
1 < p < p are generated from a uniform distribution in the rahgé, h]. We will de-
termine a suitable value fdr. The variance of:; is approximately(0.25)%|V,,|.h?/3.

Setting this to 1, so as to satisfy the above requirement, leads-t %.

If |V,| is even, the expected value ©f is zero, and as for the case of period 1, we
generate the vertex weights randomly from the uniform distributiofi-¢, ¢] where
¢ < h. In version 1, we generate the weights as described above with/10.
If |V,| is odd, the expected value of is 0.5, and we set; = —0.5 + ¢; wheree; is
generated randomly from the uniform distributipr¢, £] wherel is as given above.

