
Notes on NN for forecasting

Nicos Christofides

nicos.christofides@gmail.com

October 2009

1 Introduction

The NN is represented by a graphG(V, E) whereV is a set of vertices (neurons) and

E a set of arcs (signal-arcs).G is a multi-stage graph with stagesp = 0, . . . , p̂. Stage

p contains the subsetVp of vertices, soV = V0 ∪V1 ∪ . . .∪Vp̂. The setsV0 andVp̂ are

referred to as theinput andoutputvertices of the NN, respectively.

An arc connects a vertex, sayvi ∈ Vp−1, to a vertex, sayvj ∈ Vp, and is written as

(vi, vj). For any givenvj , the set of all verticesvi with arcs(vi, vj) is written asV in
j

(with corresponding arcsEin
j) and the set of all verticesvk ∈ Vp+1 with arcs(vj , vk)

is written asV out
j (with corresponding arcsEout

j).

With each vertexvi /∈ V0 is associated a weightui, and with each arc(vi, vj) is

associated a weightwij . TheNN input signalsare allocated as the output signals from

the verticesV0. In general, each vertexvi ∈ V produces an output signalyi which is

transmitted to all verticesvj ∈ V out
i along the arcs(vi, vj). The net input signal into a

vertexvj , say, is then

xj = uj +
∑

vi∈V in
j

wijyi (1)

1.1 The transfer function

With each vertexvj /∈ V0 is associated atransfer functionfj(.) which takes as pa-

rameter the inputxj and produces the output signalyj = fj(xj). Normally, the same

functionf(.) is used for all vertices and this function is nonlinear, often with its value

bounded from above and below.Our code uses thelogistic functionf(x) = 1
1+e−x

monotonically increasing from the value 0 (asx → −∞) to the value 1 (asx → +∞)

with the value 1/2 atx = 0. Other transfer functions (egtanh x, bounded between -1

and +1) may also be used).

1

2 The training set

Assume that:

• The topology of the graphG is given, with|V0| ≡ n inputs and|Vp̂| ≡ m out-

puts. For example we may specifyp̂ = 3 for a 3-period NN with|V0|, |V1|, |V2|, |V3|
having the values 10, 4, 2, 2, respectively; namely with 10 inputs, two ‘hidden

layers’ with 4 and 2 vertices (neurons) respectively, and 2 outputs.

• An ordered set of̂τtrain n-dimensional vectorsατ , τ = 1, . . . , τ̂train represent-

ing input training instancesis given. The value of thejth component of vector

ατ at instanceτ is written asαjτ . We will not discuss the choice of inputs here

other than to say that in version 1 we are using a vector of dimensionn = 19.

• An ordered set of̂τtrain m-dimensional vectorsβ
τ
, τ = 1, . . . , τ̂train repre-

sentingtarget training instancesis also given. The value of thejth component

of vectorβ
τ

at instanceτ is written asβjτ . We will not discuss the choice of

targets here other than to say that in version 1 we are using a vector of dimension

m = 1 and that the correspondingβ1τ is the return of the assetrelative to the

average return of it’s sector.

2.1 Preprocessing the training set

The list of pairs of input/target training instances above is jointly referred to as the

training set. In version 1, the NN input training instances (namelyαjτ) are normalized

to have mean 0 and variance 1.As usual this means:αjτ ← αjτ − µj (whereµj is the

mean value ofαjτ over all τ) followed byαjτ ← αjτ/σj (whereσj is the standard

deviation of the resultingαjτ over all τ). The normalization parametersµj andσj

are stored on file so they are applied to preprocessing other NN input instances in the

future.

As mentioned earlier these NN input training instances are allocated as the output sig-

nals fromvj ∈ V0. Therefore for vertexvj and instanceτ , we defineyjτ asαjτ .

In version 1, the NN target training instances (namelyβjτ) are standardized to lie

between 0 and 1.As usual this means:βjτ ← (βjτ − β∨j)/(β∧j − β∨j), whereβ∧j
is the maximum value ofβjτ over allτ andβ∨j is the minimum value ofβjτ over all

τ . The standardization parametersβ∨j andβ∧j are stored on file so they are applied in

the future (in reverse order) to NN output instances to convert the output to a forecast

in the original target units. (Note: Because the logistic function reaches 0 and 1 only

asymptotically, it is preferable to increaseβ∧j by a factorp > 1 and reduceβ∨j by a

factor1/p, prior to standardization. This ensures that the actual maximum and mini-

mum targets are achievable with finite inputs into the output vertices.)

In version 1, the value of p is taken as 1.05

2

2.2 The NN objective function

When an input vector instanceατ is presented to the network, a vector output instance

φ
τ

results. We wantφ
τ

to be as close to the targetβ
τ

as possible, for all instances

τ = 1, . . . , τ̂train. If ‖ β
τ
− φ

τ
‖ is some measure of the error between the target

and NN output, then we want to find values ofui andwij (vertex and arc weights,

respectively) such that the total errorz =
∑τ̂train

τ=1 ‖ β
τ
− φ

τ
‖ is minimized. The er-

ror measure most often used is the mean-square error (MSE)z =
∑τ̂train

τ=1 (β
τ
− φ

τ
)2

which is convenient for computing the derivatives, etc. needed in the conjugate gradi-

ent techniques used in the optimization algorithm.

In our code we use the MSE measure to produce an initial locally MSE-optimal so-

lution, but then change the objective to aprofitability index (PI)and perform a local

second-stage optimization - with this second objective - from there (see below).For

the rest of this note, when we refer to ‘performance’, we mean w.r.t. the PI.

3 The training process

3.1 Overfitting

It is easy to see, that for a NNG = (V, E) there are|V | − |V0| vertex weights and|E|
arc weights to determine. For most practical-size NNs, it means that there is a large

number of variables to optimize. A rule of thumb is for the number of training instances

τ̂train to be 5 to 10 times the number of free variables. Nevertheless, when using a NN

for forecasting financial time series (which always contain a lot of noise) it is easy

for the optimization to fit not only the main characteristics of the time series, but also

the noise. Thisoverfittinginvariably leads to ‘good’ performance for the training set,

but much worse performance in forecasting unseen future data. Three techniques can

be used to reduce the risk of overtraining whilst still achieving ‘reasonable’ in-sample

performance and, hopefully, improve the out-of-sample performance. (What is meant

by ‘reasonable’ is a very gray area and in our code we avoid having to decide on this

issue.)

• Small NN: The size of the NN is kept to the minimum possible, consistent

with reasonable performance. There is no theoretical reason to choose a NN

of a given size (although some bounds are derivable from ‘immersing’ the time

series into a multidimensional space and using the box-counting algorithm).In

our code we simply train different size NNs, and choose the ‘best’. (See below.)

• Reducing the number of inputs: Striving for variable reduction also

implies using as small a number (n) of NN inputs as possible. Obviously, this

3

also leads to a smaller NN. Reducing the number of NN inputs can be achieved

by extracting from a potentially large input set a smaller subset as follows:

– Use as NN inputs a (smaller) number of principal/independent components

of the potential input time series, or

– Use as NN inputs the smallest possible subset of the potential input set,

consistent with reasonable performance. This is what we use in our case.

It is not automated in the code. The user must try different combinations

of the inputs. The intention (for version 2.0) is to collect more potential

inputs (currently we have 19)1 and for each asset, do a single run on a

supercomputer to try every combination of those. For a given asset, the set

of inputs will then be fixed ‘forever’. (As mentioned earlier, in version 1.0

all 19 inputs are used.

• Validation set: Using a separate ‘validation’ technique to prematurely

terminate the training process.This is used in our code and described separately

below.

3.2 Validation

The conjugate gradient algorithm used to optimize the NN weights, is an iterative pro-

cedure that generates a sequence of weight ‘solutions’ from the initial one(u,w)0 (see

below) to the locally optimal one(u,w)ŝ in ŝ steps. The corresponding values of the

NN objective function (error) arez0
train, z1

train, . . . , zŝ
train. This sequence decreases

monotonically.

Now consider another set of, say,τ̂valid input/target instances and call this thevali-

dation set. When the above solution sequence is evaluated on the validation set, the

values of the NN objective function (error) arez0
valid, z

1
valid, . . . , z

ŝ
valid, and gener-

ally this sequence is not monotonically decreasing.Generalizationis a loose term

used in the NN literature to measure the propensity of a NN trained on some data,

to also perform well on other unseen data of the same problem. Forecasting, clearly

needs good generalization, and a measure of this is the correlation between the two

sequencesz0
train, z1

train, . . . , zŝ
train andz0

valid, z
1
valid, . . . , z

ŝ
valid. Let s̆ be the value

of s for which zs
valid is minimum. In our code we compute the correlation coefficient

between the above two subsequences froms̆ to ŝ. If the correlation is positive, we drop

the first entry from the subsequences and repeat, if the correlation is negative we drop

the last entry from the subsequences and repeat. In all cases, we stop when not enough

entries remain in the subsequences to compute the correlation (say 5 entries) and de-

clare the first entry of the remaining subsequences the ‘best’ optimization iterations∗.

1Yazid has provided another 7

4

The weights at that iteration(u,w)s∗ are the final NN weights.

3.3 Testing

Once a NN is calibrated it must be tested on totally-unused data called thetestset. This

set consists of, say,̂τtest input/target instances. The generated NNs are then ordered

for generalization depending only on their performance on the test set.

4 Generating a population of NNs

4.1 The modelling set

The training, validation and test sets, are referred to jointly as themodellingset. The

choice of the modelling set is vital for the performance of a NN. A number of choices

have to be made, and these are:

• The number̂τtrain, τ̂valid, τ̂test of instances to use.In our code we use a total of

400 instances, divided into training, validation and testing as mentioned below.

• The numbern = |V0| of inputs to use for each input instance.In our code we

use 19.

• The numberm = |Vp̂| of targets to use for each target instance.In our code we

use 1.

• The dates to be used for collecting the modelling set. These need not be consec-

utive dates.In our code we use the following procedure:

– Select 400 consecutive days finishing today (say timet0).

– Construct the 400 target instances, and the corresponding 400 input in-

stances: Note that if we are forecastingd days ahead, the last date for an

input instance ist0−d. Also note that the input instance for, say, timet (in

order to forecast for timet + d) uses information from, say,dhist days pre-

ceeding timet. For example, average returns over the 20 days preceeding

time t may be used as an input at timet, in which casedhist = 20. In our

codedhist = 100, because we use a rolling-window of the previous 100

days to compute Independent Components (and hence residuals) for time

t.

– Of the 400 instances above, we allocate 200 for training, 100 for validation,

100 for testing.

– Training, validation and test subsets of the modelling set are generated by

randomly selecting the required number of instances in each case, except

that the testing set includes the last (i.e. most recent) 10 dayst0 − 9, t0 −
8, . . . , t0. These last 10 days are called thereserve.

5

4.2 The NN generation process

Once the modelling set is selected:

1. Different partitions of the modelling set into training, validation and test subsets

are produced as mentioned above.

2. Different topologies for the NN models to be created are proposed.

3. For each NN topology, different starting points for the NN weights are con-

sidered. Because weight optimization only leads to a local optimum, different

starting points lead to different local optima.

By considering different combinations of the above 3 choices, we generate a population

of trained NNs. All NNs are evaluated on the test set. Those with negative PI are

eliminated and the rest are placed in amodel pool. In our model we take 2 choices for

item 1 above, 4 choices for item 2 and 3 choices for item 3, leading to a population of

24 NNs, the ones with positive PI forming the model pool.

4.3 NN model use at an arbitrary datet

For a given asset, the NN models in the model pool were produced and evaluated at

a given timet0. They are to be used from this time until some other future timetend

when it is decided to recreate the models. Although the NNs were created to have good

performance and generalization at timet0, their performance at timet, t0 < t 6 tend

must be re-evaluated at each timet that a forecast is needed. The re-evaluation is as

follows:

• Generate the input and target instances for theτ̂test times preceeding timet, and

refer to these instances by the indexk. k = 1, for time t− τ̂test + 1; k = 2, for

time t− τ̂test + 2, . . ., andk = k̂ for time t.

• For each NN (sayNNj) in the model pool, compute its performance using the

abovek̂ input and target instances. Temporarily eliminate from the model pool

any NN with negative performance, and letˆ̀be the size of the resulting pool.

4.3.1 A single forecasting model

In version 1.0 a single forecast is produced by averaging the forecasts of theˆ̀NNs in

the model pool. We compute the forecast return asz and it’s variance asΩ2. In version

2.0 we will do the following:

Let c`(k) be the profit ofNN` at instancek, and letc̄` be it’s expected profit. Letq``′

be the covariance betweenc` andc`′ computed over the daily forecasted profits for the

6

k̂ instances. We want to produce a forecast by weighing the forecast ofNN` with ξ`.

The best forecast is then given by the solution to:

Ω2 = min
ξ

ξT Qξ

s.t.
∑ˆ̀

`=1 ξ` = 1
∑ˆ̀

`=1 ξ`c̄` > z

whereQ = [q``′] is the covariance matrix andz is a forecasted value we want to

achieve. For feasibility, any numbermin`[c̄`] 6 z 6 max`[c̄`] will do, but we will

setz = 1
ˆ̀.

∑ˆ̀

`=1 c̄`. The above solution then produces a return above the average of

forecasted expected returns, whilst minimizing the forecasted variance of those returns.

The value ofξ∗ producing the minimum above is used to generate the best single fore-

cast. The corresponding value ofz is the forecasted return andΩ2 the variance of that

forecast.

5 A forecaster’s performance index (PI)

We use MSE as the objective function of a NN and compute vertex and arc weights

to minimize MSE obtaining an ‘optimal’ solution(u,w)∗. Following this initial opti-

mization we perform a second-stage optimization as follows.

Imagine a small hypercube of dimension|(u,w)| centered on point(u,w)∗. (The size

of this hypercube is decided below.)

- Generate a numberh of maximally-dispersed point-samples in the hypercube.

- At each one of these points (plus the centre point) evaluate a more complex but more

realistic objective function called thePerformance Index(PI).

- Choose for the NN weights that point which maximizes the PI.

Here we briefly describe the PI we use.

As mentioned earlier, in version 1 we use just one output vertex, and as a result we will

drop the vertex’s index when no confusion arises. For a given asset, we compute the

target (which is the asset return relative to that of the corresponding sector) over thek̂

instances described in the previous section, and group the values into quartileranges

(not discrete sets)Q1, Q2, Q3, Q4 counting from the top.

The following items affect the computation of the PI for a given NN forecasting model.

1. The closeness of the forecast of an asset’s return to the

target. We use the mean absolute deviation (MAD) measure

Mk =| βk − φk | for closeness.

2. The probability of ’acting’ (ie including the asset in

the portfolio, long or short) based on the forecast. Let

7

N0 be the total number of assets in the problem andN be the number we wish

to include (long or short) in the portfolio. For the purposes of computing the PI,

we take this probability asqk = 0.2 N
N0

if φk ∈ Q2 or Q3 andqk = 0.8 N
N0

if

φk ∈ Q1 or Q4.

3. The result if the forecast is acted upon. This is computed

as follows:

• Let L > S be two real numbers representing the ‘utility’ of a large or small

profit respectively. Also letλ > 1 so that−λLand− λS be the ‘utility’

of a large or small loss respectively. We use the following procedure to

compute the utility of a forecast that is acted upon:

Uk = L; if βk ∈ Q1 & φk ∈ Q1 ∪Q2, or
βk ∈ Q4 & φk ∈ Q4 ∪Q3

= S; if βk ∈ Q2 & φk ∈ Q1 ∪Q2, or
βk ∈ Q3 & φk ∈ Q4 ∪Q3

= −λ.L; if βk ∈ Q1 & φk ∈ Q4 ∪Q3, or
βk ∈ Q4 & φk ∈ Q1 ∪Q2

= −λ.S; if βk ∈ Q2 & φk ∈ Q4 ∪Q3, or
βk ∈ Q3 & φk ∈ Q1 ∪Q2

4. The opportunity loss if the forecast is not acted upon.

On the basis that missing an ‘opportunity’ is not as important as an actual gain

or loss, we defineµ < 1 and define the opportunity loss as−µ.Uk

Thus, the PI (to be maximized) is computed as

PI =
k̂∑

k=1

[−γ.Mk + (1− γ)Uk{qk − (1− qk).µ}]

In our code we use the following parameters (with no experimentation).L = 2, S =
0.3, λ = 2, µ = 0.1, γ = 0.3. Note that increasingγ puts more emphasis on

the statistical accuracy of the forecast and less on it’s consequences, and increasingλ

increases the risk aversion.

6 Initialization of NN weights

Since the transfer functions for the vertices in periods1, 2, . . . , p̂ are all logistic, they

exhibit saturation of the output when the input signal is much greater than 1. What is

therefore required, is for the initial random initialization of the weights to lead to vertex

input signals with expected value equal to zero and variance of approximately 1.

8

6.1 For the first period

Equation?? gives the total input signal into a vertexvj . Let us assume that the arc

weightswij for the arcs(vi, vj), vi ∈ V0, vj ∈ V1 are generated from a uniform dis-

tribution in the range[−a, a]. We will determine a suitable value fora. It is clear that

the expected value ofxj is 0 regardless of the value ofa. The variance of thewij is

a2/3, so the variance ofxj is approximatelyn.a2/3. Setting this to 1, so as to satisfy

the above requirement, leads toa =
√

3
n .

The vertex weightsuj for the verticesvj ∈ V1, can be set to zero. However, it is

better for the conjugate gradient algorithm used for training, not to have equal weights.

It is, therefore, better to generate theuj randomly from the uniform distribution[−b, b]
whereb ¿ a. In version 1, we generate the weights as described above withb = a/10.

6.2 For all other periods

Referring to equation?? again, and considering verticesvi ∈ Vp and vj ∈ Vp+1,

1 6 p < p̂, we know that the value ofyi has expected value 0.5. The variance ofyi is,

say,λ2. Becauseyi lies in the range0.5 ± 0.5, λ cannot be greater than0.5. Because

the variance of the input tovi was required to be equal to 1, the outputyi varies (ap-

proximately) in the range0.5± 0.25 andλ ≈ O(0.25).
Let us assume that the arc weightswij for the arcs(vi, vj) : vi ∈ Vp, vj ∈ Vp+1,

1 6 p < p̂ are generated from a uniform distribution in the range[−h, h]. We will de-

termine a suitable value forh. The variance ofxj is approximately(0.25)2|Vp|.h2/3.

Setting this to 1, so as to satisfy the above requirement, leads toh =
√

48
|Vp| .

If |Vp| is even, the expected value ofxj is zero, and as for the case of period 1, we

generate the vertex weightsuj randomly from the uniform distribution[−`, `] where

` ¿ h. In version 1, we generate the weights as described above with` = h/10.

If |Vp| is odd, the expected value ofxj is 0.5, and we setuj = −0.5 + εj whereεj is

generated randomly from the uniform distribution[−`, `] where` is as given above.

9

