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In this paper we present two lower bounds for the p-median
problem, the problem of locating p facilities (medians) on a
network. These bounds are based on two separate lagrangean
relaxations of a zero-one formulation of the problem with
subgradient optimisation being used to maximise these bounds.
Penalty tests based on thesz lower bounds and a heuristically
determined upper bound to the problem are developed and
shown to result in a large reduction in problem size. The
incorporation of the lower bounds and the penalty tests into a
tree search procedure is described and computational results
are given for problems with an arbitrary number of medians
and having up to 200 vertices. A comparison is also made
between these algorithms and the dual-based algorithm of
Erlenkotter.

1. Introduction

The p-median problem is the problem of locat-
ing p facilities (medians) on a network so as to
minimise the sum of all the distances from each
vertex to its nearest facility. This problem occurs
quite frequently in practical situations, e.g. the
location of supply depots on a road network where
the vertices of the network répresent the customers
that are to be supplied from the depots.

A number of algorithms have been developed
for this problem: .

(i) Tree search procedures such as Efroymson
and Ray [2], and Khumawala [7];

(ii) Linear programming based approaches such
as Spielberg (15}, Garfinkel et al. [5], Rosing and
Revelle (13}, and Schrage [14];

(iii) Heuristic methods such as Maranzana [8],
and Teitz and Bart [16).
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It is well known that this problem is NP-hard
[17], nence the use of tree search procedures for its
solution. Lagrangean relaxation in conjunction
with s.bgradient optimisation can be used to com-
pute lower bounds for use in tree search proce-
dures, and has been applied successfully by other
authors to location problems (e.g. Neebe and Rao
[11], Cornuejols et al. [1}, Narula et al. [9], Neebe
[12] and Nauss [10]). Here we extend this work by
comparing two different lagrangean relaxations of
the problem, by developing “penalty tests” for
reducing the problem size and by incorporating
the resulting lower bounds into a tree search pro-
cedure where branching is controlled by the struc-
ture of the solution to the lagrangean problem.
Computational results are given for large networks
(up to 200 vertices).

2. Problem formulation

The p-median problem can be formulated as a
zero-one program as follows:

Let d,, (=0) represent the cost of allocating
vertex j to vertex i, with V the entire vertex set. Let

_ |0
a, = X

(Note that g, = 0 is equivalent to settingd,, = c0.)
Let

if vertex j cannot be allocated to vertex 7,
otherwise.

1 if vertex is allocated to vertex i
(which implies that i is a median vertex),
0 otherwise

1y -

The problem then is

min  z= 2 2 duxoj’ (I)
eV ev
st. Yx;=1 VjeV (2)
ieV
2 x,=p, (3)
1€V
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> a, x,<nx, Vi€V, (4)
JEV
Viali
x,€{0,1} VieV,jeV. (5)

Equation (2) ensures that each vertex is allocated
to a median and (3) that there are p median
vertices. In (4) we define

n=3a, VieV. (6)
JEV
JF*Ei
The usual formulation of this problemis a,, = 1
VieV,jEV and n,=|V|—1 Vi€ V. Equation
(4) ensures that nothing can be allocated to a
vertex unless that vertex is a median.
The two relaxations of this problem that we
investigate are
1. LR1 - relaxation of equation (2);
2. LR2 - relaxation of eguation (4).

3. The lagrangean dual programs

In formulating the lagrangean dual programs
we introduce K, as the set of vertices that have
been positively identified as medians and K, as the
set of vertices that have been positively identified
as non-medians to facilitate incorporating the
bounds into a tree search procedure.

Consequently we can define
B, =mind, VjeV-K, (7)

1€K,

as the maximum allocation cost of each vertex
3.1. Relaxation LRI

For the relaxation LR1 we introduce lagrange
multipliers A, =0 (j € V) for (2) in the zero-one
formulation of the problem to obtain the
lagrangean dual program

min zp= Y 2 (4,-7)x,
1€V—K, jevV-K,
d,,<8,
+ 2 (d,=-2)+ I A, (8)
JEK, JEV
s.t. 2 x,,=P‘|K||s (9)

i€ V-KO—KI

2 a,x,<nx, ViEeV (10)
JEV—K,

dll‘pl

71
x,=0 Viek,, (1)
x,=1 ViEK,, (12)
x,€{0,1} VieV, eV, (13)

This program can be easily solved. Suppose a
set of values for the A, are given and consider the
effect on the lagrangean dual of specifying that k
is a median vertex. The best set of allocations of
vertices to k that can be achieved is

1 if(d,u—)\j)<0andjv&k
X, = andd, <pB andjEV—-K,, (14)
0 otherwise (j# k).

The contribution to the dual objective function
a, is therefore given by

ak:(dkk—Ak)‘{' 2 mln(O,ko_Al)
JeV- K,
d,,<B,
17k

vkeV-K,. (15)

The lagrangean dual program (equations (8) to
(13)) then reduces to

min zp= Y ax,+ A, (16)
1€V-K, JEV
s.t. 2 x,=p—|K\|, (17)
1€V—Ky—K,
x, =1 Vie Ky, (18)
x, €{0,1} VieV—K,. (19°

The optimal solution to this program is found
by setting x,, to one for i €K, and the p — | K| x,,
with the smallest a, (i € V' — K, — K,) to one with
all other x,, set to zero. Let (x}) represent the
values given to the (x,,) in the optimal solution of
the dual program defined by (16) to (19), then the

values of the allocation variables (x},) are given by

1 ifx*=1landi#jand(d,, —7)<0
X} = andd,, <BandjEV—K,,
0 otherwise (i %j).
(20)
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The dual solution value z§ is given by

2= ax*+ > A, (21)

eV JEV

3.2. Relaxation LR2

For the relaxation LR2 we introduce lagrange
multipliers A, =0 (i € V) for (4) in the zero-one
formulation of the problem to obtain the
lagrangean dual program

min ZD= 2 2 (dlj+alel)xl[
1EV—-K, JEV—K,
d,,<B
FAall
+ 2 (d” _.n,A')x”, (22)
1€EV—-K,
s.t. S x,=1 VjeV-K, (23)
1EV—Ky—K,
S x.=pIKil (24)
1€V-Ky—K,
A, =0 Viek,, (25)
x, =0 Vi€ K,, (26)
x, =1 Viek,, (27)
x,€{0,1} VieVjeV. (28)

This program can be easily solved - define a, as
the minimum cost of allocation of vertex j other
than to itself, i.e.

a, =’€r9i_nkn(d,j +a,A,) VjEV-K,. (29)

1%y
d,,<ﬂ,

The lagrangean duel program (equations (22) to
(28)) then reduces to

min zp= a + 3 d,
JEV—-K, €K,
+ 2 (du _"/AJ —a/) Xy
JEV—K;—K,
(30)
s.t. 2 X“ =p—'K I’
1€V~-Ky—K, l (31)
x, =1 Viek,, (32)
x, €{0,1} VieV-K,. (33)

The optimal solution to this program is found
by setting x,, to one for i € K, and the p — | K| x,,
with the smallest a; (i € V — K, — K) to one with
all other x,, set to zero. Let (x}) represent the
values given to the (x,,) in the optimal solution of
the dual program defined by (30) to (33), then the
values of the allocation variables (x}) are given by

1 if x}, =0 and i corresponds to

xh= the minimum in (29) for a, (i #/),
0 otherwise (i %) (34)
The dual solution value z§ is given by
z5= 2 a,+ > d,
JEV—K, JEK,
+ ¥ (d,-nX —a)xk. (35)

JEV—K,—K,

This relaxation can be considerably strength-
ened by judicious choice of the a,, because n,
(=2,cv,»3,) appears in the dual objective
function equation (22) with a negative sign and so
decreasing n, will (in general) increase the bound.
We adopted the following approach to solving the
lagrangean dual:

(1) Leta,,=1 Vi€V, j€V and determine a,
as given in (29);

(2) Reset all a,, by

a—d,
max 0,-T— , NF0,VieV-K,,
a,= /
Vje V—Kl’dl_/< /8
0. otherwise

(36)

(i.e. decrease all a,, whilst leaving a, unchanged)
and solve the lagrangean dual using these new a,,
values (and new n, values).

4. Problem reduction

From the lagrangean dual program we can
estimate the increase in the lower bound that
would result from forcing vertices to be median/
non-medians and from forcing an arc (i.e. an
allocation) to be in the solution. If the lower
bound that results from imposing some condition
in the lagrangean dual program is above some
heuristically determined upper bound to the p-
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Table 1
Penalties for LR1

199

JEV—M* JjeEM*— K,
eV-M*—-K, a,— max a 1=y a,—a,+max(0,d,, — X))
kEM*- K,
«— max a;

keM*— K,
+max(0.d,,—A) 17y

1EM* max(0.d,,— X))

0 1=y
min a; - a,

kEV- M*-K,

+max(0.d,,—A,) 1#

median solution, then that condition cannot be
satisfied in the optimal p-median solution.

Let M* be the set of lagrangean median vertices
i.e.

M* = (i| x* =1}. (37)

We can then develop penalties for setting x,, to
one in the lagrangean dual solution (i.e. forcing
the allocation of j to i). These are given in Table |
for relaxation LR1 and Table 2 for relaxation LR2,
e.g. for Table! withi€ V— M* — K, and j € M*
— K, where i is a non-median and j is a median,
the penalty is composed from the cost of making j
a non-median (—aj ), making i a median (+a,)
and allocating j to i if it is not already allocated
(max(0,d,, —A))).

In a similar manner penalties can be developed
for x,, =0 (given that x} =1). One further set of
penalties that are worthy of mention in connection
with LR2 relate to (8,) the set of maximum alloca-

tion costs. For relaxation LR2 it is possible tc
show that

B <zyp—zhta, j&M*, (38)
B] <zyup —z}")+(d” —nj)\,)

+ min  (d,, —n, A, —a,), JEM* (39)

heV—M*—K,

where z;;; is any upper bound on the problem.
Obviously the penalties given above can be

strengthened, albeit at an increase in computa-

tional effort but we have found the simple penal-

ties outlined above to be quite effective in reduc-

ing the size of the problem by fixing variables.

5. The subgradient procedure

Subgradient optimisation is a technique for pro-
gressively updating lagrange multipliers in a sys-
tematic way in an attempt to maximise the value

Table 2
Penalties for LR2
JEV — M* JEM*— K,
1EV—-M*—K, (d,—n}A —a) d,—nA, —a)
—kezgx " (dy—nm A —ay) 1= ~(d,—nA)+(d, +a,)
- 1
d,—nA —a)t(d, +a,l)
= max  (dg— A —ay)
ke M*~K,
-a, 15
€ M* —a,+(d,+a,}) 0 1=

~(d,~n\)+(d, +a,\)
+ min (dex — Ay —ag) 17
keyV-M*—K,




200 N. Christofides, J.E. Beasley / Tree search algorithm

of the lagrangean dual program. The subgradient
srocedure, incorparating the penalty tests devel-
oped above, is as follows:

(1) Determine an initial value for zyz - the
upper bound on the problem. This can be done
using any heuristic for the p-median problem (e.g.
Teitz and Bart [16]). Let z§ = — oo where z{ is the
maximum lower bound found during the subgradi-
ent procedure.

(2) Choose an initial value for the (A)) - we
used

A, =mind, V€V LRI, (40)
1€V
1%y

A, =0 ViEV LR2. (41)

(3) For the current set of lagrange multipliers
(A,) determine the optimal lagrangean dual solu-
tion z} with M* the associated median set and
(x7,) the associated variable values.

(4) Determine the cost of the feasible solution
associaied with Af*. This is given by

$da,+ 3 (mm (d,) ) (42)

€M* jev-M> EM®

If this is better than z 5 then update zz accord-
ingly. Similarily set

z¥ =max(zf,28). (43)

(5) Stop if zyy =czf, ie. the highest lower
bound found and the upper bound (corresponding
to a feasible solution) coincide; else go to (6).

(6) Perform the penalty tests outlined previ-
ously.

(7) Define the subgradient vector S by

§=1- 3 x* VjEV LRI, (44)
1EM*
S,= X a,x*—nxt VieV LR2 (45)
JEV
Vkall

(8) Stop if S, =0V, € V when an optimal solu-
tion (x}*) will have been found else go to (9).
9) Calculate a step size ¢ for use in updating
the lagrange multipliers by
7(zyp — 23)

SEENTYE (46)

where 7 a constant (0 <7 <2) and || S|l any norm
of the subgradient vector — we used the Euclidean
norm (2 ¢, S?)"/2.

(10) Update the lagrange multipliers by
A, =max(0,\, +1S)) VjEV. (47)

(11) Go to (3) to resolve the lagrangean dual
program with this new set of multipliers unless
some termination condition (such as the maximum
number of iterations allowed) is satisfied in which
case stop.

In choosing a value for 7 (eq. (46)) we followed
the approach of Held, Wolfe and Crowder [6] in
letting 7 =2 for 2| V]| iterations and then succes-
sively halving both the value of # and the number
of iterations until the number of iterations reached
a threshold value of 5, # was then halved every 5
iterations.

6. The tree search procedure

In the event that the subgradient procedure
does not optimally solve the problem a reduction
in the size of the problem will probably have been
achieved because the penalty tests will have fixed
certain vertices as medians /non-medians etc. Any
of the existing tree search algorithms for the p-
median problem could then be used on the re-
duced problem to obtain an optimal solution. We
used a depth-first tree search procedure based on
the lagrangean relaxations of the problem dis-
cussed earlier. The branching strategy used was to
pick the vertex j corresponding to

a’_.eglfnx,a LRI, (48)
d,—nX —a=
mm (d ~nA,—a,) LR2 (49)
ieM*—

at any node of the tree (ties for j arbitrarily
broken) and to branch by setting x,, to one (as
intuitively j corresponds to the vertex most likely
to be a median in the optimal completion of the
current node).

Obviously there is a trade-off between continu-
ing to investigate a node of the tree using the
subgradient procedure and abandoning it to branch
from that node and we indicate below how we
balanced the two alternatives in the algorithm
used to obtain the computational results reported
in the next section.
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6.1. The initial node

We carried out the subgradient procedure at the
initial tree node until one or more of the following
conditions were satisfied:

(i) All subgradients were zero (i.e. an optimal
solution had been obtained);

(ii) The minimum feasible solution z; and the
maximum lower bound z§ coincided (i.e. zyy cor-
responds to an optimal solution);

(iii) 7 (eq. (46)) dropped below 0.005.

Computational experience indicated that, for
both relaxation LR1 and LR2, computing the
penalties for all possible allocations at each
subgradient iteration had little effect on the
convergence of the procedure. Accordingly the
penalty tests carried out at each subgradient itera-
tion were:

(1) For LR]1 and LR2 the tests to identify
vertices as medians /non-medians;

(2) For LR2 the test on the maximum alloca-
tion cost B,.

A

If no optimal solution was found at the initial
node, then the set of lagrange multipliers corre-
sponding to z{, the maximum lower bound, were
recalled and the penalty tests for all possible alloc-
ations using this set of multipliers performed.
Typically this removed a large percentage of the
possible allocations.

6.2. The tree search nodes

Thirty subgradient iterations were performed at
the tree search nodes with the initial set of lagrange
multipliers being the best set associated with the
previous node. A value of 7 (eq. (46)) equal to one
was used and the same penalty tests that were used
at the initial tree node were performed at every
node.

7. Results

The algorithm was programmed in FORTRAN
and run on a CDC 7600 machine, (using the FTN

. Initial node lower bound 2876. 82

(3) 2876.83 @
U 2876. 84 (25)

W 2883.01 @ 38)V

25/ 2878.47 R

T @ @ 2913.87 S

upper bound 2894. 0

Infeasible 2897.96
¥ @ @ X G 47) 2887.99 D
2894, 48 2894.03 @ 2876.82 0 289538
F (%) (99) 2894 E
3 2876.83 (38) (38) 2908.95 1 2897. 0 Optimal
Solution

N 2880. 41 (47)
r (%) (6)o0

2904.15 2909, 12
M (99

@ 2882.73 K
(99 L

2894.15 2979.0

Fig. 1. The tree search for p=5, n=150, Relaxation LR1.
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compiler), for a number of randomly generajed
problems. For all of these problems the randomly
generated allocation cost matrix (d,,) was sub-
jected to Floyd’s [4] algorithm to ensure that the
triangularity condition was satisfied.

Other authors have indicated that the p-median
problem is hardest to solve for p=|V|/3 so for
the larger problems with |V|=75, 100, 150 we
solved p = 25, 33 and 50 respectively.

Table 3 shows the results for the problems using
both relaxations LR1 and LR2. The duality gap at
the initial tree node is measured by

(optimal value — lower bound at initial node)
(optimal value)

X 100%.

It can be seen from that table that relaxation LR1
is superior to relaxation LR2 and that for only 3
of the 19 problems considered was any branching
required with relaxation LR1. The time quoted
excludes the set-up time needed to generate the
allocation cost matrix.

Figure 1 shows the tree search for problem 15
(relaxation LR1). A number x (X) inside the circle
representing a node implies that vertex x is chosen
to be (not to be) a median. The number beside
each node is the value of the lower bound at the
end of the lagrangean ascent for that node. The
trce search was generated in a depth-first manner.
The letters next to the nodes indicate the order in
which they were generated (A first, B second, etc.).

The difficulty in using the Erlenkotter [3] algo-
rithm for the p-median problem lies in choosing
the fixed cost to be associated with each median
vertex, as the Erlenkotter algorithm balances the
fixed costs of the median vertices against the varia-
ble costs of allocation in choosing an optimal
solution. A fixed cost must be chosen that will
produce exactly p median vertices in the optimal
solution (note that there may not exist a set of
fixed costs which will give exactly p median vertices
in the optimal solution). Consequently in the re-
sults for the Erlenkotter algorithm shown in Table 3
we present the number of cost iterations we re-
quired before finding a fixed cost that gave exactly
p median vertices and the time quoted is the time
over all <ost iterations (again this time excludes
the set-up time needed to create a sorted cost
matrix). For 4 of the problems no integer fixed
costs could be found that would lead to the ap-

propriate value of p. The computational strategy
used in the dual asceni phase at the initial tree
node and in the tree search was identical to the

strategy adopted by Erlenkotter in reporting his
results.

It can be seen from Table 3 that relaxation LR
always produced a lower duality gap at the initial
tree node than either LR2 or Erlenkotter’s algo-
rithm. For the problems with | V|= 30 the Erlen-
kotter algorithm is an order of magnitude faster
than relaxation LR1 but for the larger problems
the two algorithms become competitive.
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