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In this paper we present two lower bounds for the p-median 
problem, the problem of locating p facilities (medians) on a 
network. These bounds are based on two separate lagrangean 
relaxat.ions of a zero-one formulation of the problem with 
subgradient optimisation being used to maximise these bounds. 
Penalty tests based on the~.e lower bounds and a heuristically 
determined upper bound to the problem are developed a.qd 
shown to result in a large reduction in problem size. The 
incorporation of the lower bounds and the penalty tests into a 
tree search procedure is described and computational results 
are given for problems with an arbitrary number of medians 
and having up to 200 vertices. A comparison is also made 
between these algorithms and the dual-based algorithm of 
Erlenkotter. 

It is well known that this problem is NP-hard 
[17], hence the use of tree search procedures for its 
solution. Lagrangean relaxation in conjunction 
with s:,bgradient optimisation can be used to com- 
pute lo~,er bounds for use in tree search proce- 
dures, and has been applied successfully by other 
authors to location problems (e.g. Neebe and Rao 
[!1], Cornuejols et al. [1], Narula et al. [9], Neebe 
[12] and Nauss [10]). Here we extend this work by 
comparing two different lagrangean relaxations of 
the problem, by developing "penalty tests" for 
reducing the problem size and by incorporating 
the resulting lower bounds into a tree search pro- 
cedure where branching is controlled by the struc- 
ture of the solution to the lagrangean problem. 
Computational results are given for large networks 
(up to 200 vertices). 

2. Problem formulation 

I. Introduction 

The p-median problem is the problem of locat- 
ing p facilities (medians) on a network so as to 
minimise the sum of all the distances from each 
vertex to its nearest facility. This problem occurs 
quite frequently in practical situations, e.g. the 
location of supply depots on a road network where 
the vertices of the network rej~resent the customers 
that are to be supplied from the depots. 

A number of algorithms have been developed 
for this problem: 

(i) Tree search procedures such as Efroymson 
and Ray [2], and Khumawala [7]; 

(ii) Linear programming based approaches such 
as Spielberg [15], Garfinkel et al. [5], Rosing and 
Revelle [13l, and Schrage [14]; 

(iii) Heuristic methods such as Maranzana [8], 
and Teitz and Bart [16]. 
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The p-median 'problem can be formulated as a 
zero-one program as follows: 

Let d,j (~  O) represent the cost of allocating 
vertexj to vertex i, with V the entire vertex set. Let 

0 if vertexj cannot be allocated to vertex i, 
a,j = 1 otherwise. 

(Note that a,j = 0 is equivalent to setting d,j = oo.) 
Let 

= I 1 
X U [ 0 

if vertexj is allocated to vertex i 
(which implies that i is a median vertex), 

otherwise 

The problem then is 

min 

s.t. 

z= 2 2 d, x,j, 
t EV  j •V  

%=1 vj v 
i E V  

~ x ,  =p,  
t E V  

(l) 

(2) 

(3) 
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aux,j~n,x, ,  Vi ~ V, 
j E V  

x u E { 0 ,  1 } V i E V ,  j E V .  

(4) 2 
j E V - K t  

a,,,~ #, 
J=~ t 

(5) 

Equation (2) ensures that each vertex is allocated 
to a median and (3) that there are p median 
vertices. In (4) we define 

n, = ]E a u  V i  E V. (6) 
j E V  
j ~ t  

The usual formulation of this problem is a,j = I 
V i E V ,  j E V a n d  n, =l V I - 1  Vi E V. Equation 
(4) ensures that nothing can be allocated to a 
vertex unless that vertex is a median. 

The two relaxations of this problem that we 
investigate are 

1. LRi - relaxation of equation (2); 
2. LR2 - relaxation of equation (4). 

3. The lagrangean dual programs 

In formulating the lagrangean dual programs 
we introduce Kt as the set of vertices that have 
been positively identified as medians and K o as the 
set of vertices that have been positively identified 
as non-medians to facilitate incorporating the 
bounds into a tree search procedure. 

Consequently we can define 

fij = min d,j Vj E V -  K I (7) 
tEK I 

as the maximum allocation cost of each vertex 

3.1. Relaxation LRI 

For the relaxation LRi  we introduce lagrange 
multipliers ~,j ~ 0 ( j  ~ V) for (2) in the zero-one 
formulation of the problem to obtain the 
lagrangean dual program 

min ZD= '~. '~ ( d , , - ~ j ) x , ,  
t E V - K o j E V - - K  I 

d, ffg flj 

Jr 2 ( d D - - X y ) J r  2 ~'.t '  ( 8 )  
jEKt  j E V  

s.t. x , , = p -  Ig, I, (9) 
iE V - K o - K I  

a,jx,j ~ n,x,, Vi E V (10) 

x , , = 0  V i ~ K  o, (!1) 

x , , =  1 ViEKI ,  (12) 

x , , E { 0 , 1 }  V i E V ,  j ~ V .  (13) 

This program can be easily solved. Suppose a 
set of values for the hj are given and consider the 
effect on the lagrangean dual of specifying that k 
is a median vertex. The best set of allocations of 
vertices to k that can be achieved is 

Xkk = !, 

I if (dkj -h j )~Oandj=/=k 

xkj = and dkj ~</3/andj E V-- K I , (14) 

0 otherwise ( j  =/= k) .  

The contribution to the dual objective function 
a k is therefore given by 

O t k = ( d k k - - ~ k ) +  2 min(0, d~, - )~,) 
]~ V- K I 

/¢=k 

Vk ~ V -  K o. (15) 

The lagrangean dual program (equations (8) to 
(13)) then reduces to 

min z D = ~ a,x,, + ~] X,. (16) 
tE V -  Ko IE V 

s.t. ~ x,, = p - I K ,  I, (17) 
t C V-- K o -- K t 

x,,=! (18) 
x.~{0,1} (19' 

The optimal solution to this program is found 

V t  L g I , 

V! E V -  K 0. 

by setting x ,  to one for i ~ KI and the p - I KI [ x,, 
with the smallest a, (i E V -  K 0 - K~ ) to one with 
all other x,, set to zero. Let (x*)  represent the 
values given to the (x,,) in the optimal solution of 
the dual program defined by (16) to (19), then the 
values of the allocation variables (x~)  are given by 

={i 
if x* = 1 and i =~j and (d, ,  - hj ) <~ 0 

and d,j g flj and j • V -  K I , 

otherwise (i ~ j  ). 

(20) 
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The dual solution value z~ is given by 

= 2 ,,x,*, + 2 x,. 
t E V  j6V 

(21) 

3.2. Relaxation LR2 

For the relaxation LR2 we introduce lagrange 
multipliers A, 9 0  (i 6 V) for (4) in the zero-one 
formulation of the problem to obtain the 
lagrangean dual program 

min ZD= ~ ~ (d,j+a,jh,)x,] 
t6 V -  K o 1 E  V - K 1  

a,,~l~, 

+ ~ (d,, -n ,X,)  x,,, (22) 
t E  V - - K o  

s.t. ~ x,j = I '¢j 6 V -  K, ,  (23) 
16V--Ko--K , 

x,, = p - I K ,  I, (24) 
I E  V - K  u - K  I 

)~,=0 V i 6 K , ,  (25) 
x,, = 0 Vi 6 K o, (26) 

x,, = 1 Vi 6 K,, (27) 

x,j E {O, l } Vi 6 V.j 6 V. (28) 

This program can be easily solved - define % as 
the minimum cost of allocation of vertex j other 
than to itself, i.e. 

min (d,y +a,,X,) V j 6 V - K , .  (29) 
Olj - -  t ~  V - K  a 

The lagrangean duel program (equations (22) to 
(28)) then reduces to 

min ZD= ~ % +  ~ djj 
j E  V - - K  I 1 6 K  t 

+ 2 (G -.,x, - x,,, 
j 6  V - K o - K  L 

(30) 

s.t. ~, x . - - p -  IK, I. (31) 
t6 V -  Ko - K t 

x,, = ! Vi 6 K,, (32) 

x , , 6{0 ,1}  V i 6 V - K  o. (33) 

The optimal solution to this program is found 
by setting x,, to one for i e K I and the p - ]Kll x,, 
with the smallest a i (i 6 V -  K 0 - Kt) to one with 
all other x .  set to zero. Let (x,~) represent the 
values given to the (x . )  in the optimal solution of 
the dual program defined by (30) to (33), then the 
values of the allocation variables (x~) are given by 

{10 i fx~=Oandic°rresp°ndst°  
x ~ =  the minimum in (29) for % ( i ~ j ) ,  

otherwise ( i ~=j ) (34) 

The dual solution value z~ is given by 

J E V - - K  t J E K I  

+ ( G  - , , x ,  - G .  (35) 
j ~  V - - K o - K j  

This relaxation can be considerably strength- 
ened by judicious choice of the a,j because n, 
(=~jev.j~,a,j)  appears in the dual objective 
function equation (22) with a negative sign and so 
decreasing n, will (in general) increase the bound. 
We adopted the following approach to solving the 
lagrangean dual: 

(1) Let a,j = 1 Wi 6 V, j 6 V and determine % 
as given in (29); 

(2) Reset all a,j by 

f max 0, aj - d,j ( h A '  
a U - -  

O, 

~, :/: 0, Wi E V -  K o, 

Wj 6 V -  Ki, d,j <~ fl J, 
otherwise 

(36) 

(i.e. decrease all a,j whilst leaving % unchanged) 
and solve the lagrangean dual using these new a,j 
values (and new n, values). 

4. Problem reduction 

From the lagrangean dual program we can 
estimate the increase in the lower bound that 
would result from forcing vertices to be median/ 
non-medians and from forcing an arc (i.e. an 
allocation) to be in the solution. If the lower 
bound that results from imposing some condition 
in the lagrangean dual program is above some 
heuristically determined upper bound to the p- 
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T a b l e  I 

Penal t ies  for L R !  

JE V -  M* jc~ M * -  K= 

t ~ : V - M * - K  o a , -  max a k i = j  a , - % + m a x ( O , d , s - X  ~) 
k E  M * - -  K I 

a,  - m a x  a k 
k ~  M * -  K I 

+ max(0, d,s - 2k s ) : =/= j 

max(0,  d,s - hs ) : = J t E M *  0 
min at, - a t 

k E V - M *  - K o 

+ max(0, d,~ - / ~ )  

median solution, then that condition cannot be 
satisfied in the optimal p-median solution. 

Let M* be the set of lagrangean median vertices 
i.e. 

M* = {i I x* = i ). (37) 

We can then develop penalties for setting x,j to 
one in the lagrangean dual solution (i.e. forcing 
the allocation o f j  to i). These are given in Table ! 
for relaxation LRI and Table 2 for relaxation LR2, 
e.g. for Table I with i E V -  M* - K 0 and j ~ M* 
- K  I where i is a non-median and j is a median, 
the penalty is composed from the cost of mak ing j  
a non-median ( - % ) ,  making i a median ( + a , )  
and allocating j to i if it is not already allocated 
(max(0, d,j - ~ j ) ) .  

In a similar manner penalties can be developed 
for x,s = 0 (given that x,~ = I). One further set of 
penalties that are worthy of mention in connection 
with LR2 relate to (fls) the set of maximum alloca- 

tion costs. For relaxation LR2 it is possible tc 
show that 

flj <~ Zun -- z~ + a;, j q~ M*, (38) 

- + ( d .  - ) 

+ min ( d ~ k - - n k h  k - a t , ) ,  j E M *  (39) 
I~ G V -  M *  - K o 

where Zur ~ is any upper bound on the problem. 
Obviously the penalties given above can be 

strengthened, albeit at an increase in computa- 
tional effort but we have found the simple penal- 
ties outlined above to be quite effective in reduc- 
ing the size of the problem by fixing variables. 

5. The subgradient procedure 

Subgradient optimisation is a technique for pro- 
gressively updating lagrange multipliers in a sys- 
tematic way in an attempt to maximise the value 

T a b l e  2 

Penal t ies  for LR2  

j ~  V -  M* j E  M * -  K I 

: E  V -  M * -  K o (d , ,  -- n , h ,  - a , )  
- max  ( d k k - - n k h k - - a k )  : = J  

k E M *  -- K I 

( d,, -- n ,~,  - a t ) + (  dts + atsh ,) 
- max  (dkk - nk~'k - a k )  

k E M * - K I  
- %  tv~ j 

t E  M *  - % + ( d , j  + a.j~t) 0 

(d . .  - n . h .  - a . )  

- ( d .  - n j X j ) + ( d .  / + a..~.. ) 

: = j  

- ( d .  - ns~s)+(d,~ + a,s~,) 
+ rain (dkk--nAhk--a~)  ~=~y 

k E V - -  M * - K o  
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of the lagrangean dual program. The subgradient 
~rocedure, incorporating the penalty tests devel- 
oped above, is as follows: 

(1) Determine an initial value for zua - the 
upper bound on the problem. This can be done 
using any heuristic for the p-median problem (e.g. 
Teitz and Bart [16]). Let z~. = - 0 0  where z~. is the 
maximum lower bound found during the subgradi- 
ent procedure. 

(2) Choose an initial value for the (~,j) - we 
used 

V j E  V LRI,  (40) X i ---- mind, j 
t ~ V  
I * t  

4 , - 0  V i E  V LR2. (41) 

(3) For the current set of lagrange multipliers 
(~,j) determine the optimal lagrangean dual solu- 
tion z~ with M* the associated median set and 
(x,~) the associated variable values. 

(4) Determine the cost of the feasible solution 
associated with M*. This is given by 

~.. d,, + ~ ( rain (d , j ) ) .  (42) 
IEM* tE  M* j C  V -  M* 

If this is better than Zua then update Zua accord- 
ingly. Similarily set 

z~. = max(z~., z~). (43) 

(5) Stop if Zun =z~, i.e. the highest lower 
bound found and the upper bound (corresponding 
to a feasible solution) coincide; else go to (6). 

(6) Perform the penalty tests outlined previ- 
ously. 

(7) Define the subgradient vector S by 

Sj-I- E x,~ V j E V  LRI,  (44) 
I(EM* 

S, - ~. a,,x; -- n,x* Vi e V LR2 (45) 
jEV 
j =A t 

(8) Stop if S I = 0 Vj E V when an optimal solu- 
tion (x,~) will have been found else go to (9). 

(9) Calculate a step size t for use in updating 
the lagrange multipliers by 

- 

t = (46) 
llSll 2 

where ~r a constant (0 < ~r ~ 2) and II S II any norm 
of the subgradient vector - we used the Euclidean 
norm (Y~j~ vS/) ' /2.  

(10) Update the lagrange multipliers by 

~,j = max(0, ?~, + tS~) Vj ~ V. (47) 

(11) Go to (3) to resolve the lagrangean dual 
program with this new set of multipliers unless 
some ter~dnation condition (such as the maximum 
number of iterations allowed) is satisfied in which 
case stop. 

In choosing a value for ¢r (eq. (46)) we followed 
the approach of Held, Wolfe and Crowder [6] in 
letiing ~r = 2 for 2iV I iterations and then succes- 
sively halving both the value of ~r and the number 
of iterations until the number of iterations reached 
a threshold value of 5, ~r was then halved every 5 
iterations. 

6. The tree search,, procedure 

In the event that the subgradient procedure 
does not optimally solve the problem a reduction 
in the size of the problem will probably have been 
achieved because the penalty tests will have fixed 
certain vertices as medians/non-medians etc. Any 
of the existing tree search algorithms for the p- 
median problem could then be used on the re- 
duced problem to obtain an optimal solutior~. We 
used a depth-first tree search procedure based on 
the lagrangean relaxations of the problem dis- 
cussed earlier. The branching strategy used was to 
pick the vertex j corresponding to 

aj= rain a, LRI, (48) 
t E M * - K  I 

d . -  nj j- a,= 

nfin ( d , , - n , ~ , - a , )  LR2 (49) 
i E M * - K  I 

at any node of the tree (ties for j arbitrarily 
broken) and to branch by setting x a to one (as 
intuitively j corresponds to the vertex most likely 
to be a median in the optimal completion of the 
current node). 

Obviously there is a trade-oft between continu- 
ing to investigate a node of the tree using the 
subgradient procedure and abandoning it to branch 
from that node and we indicate below how we 
balanced the two alternatives in the algorithm 
used to obtain the computational results reported 
in the next section. 
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6.1. The initial node 

We carried out the subgradient procedure at the 
initial tree node until one or more of the following 
conditions were satisfied: 

(i) All subgradients were zero (i.e. an optimal 
solution had been obtained); 

(ii) The minimum feasible solution Zua and the 
maximum lower bound z~ coincided (i.e. ZuB cor- 
responds to an optimal solution); 

(iii) ~r (eq. (46)) dropped below 0.005. 
Computational experience indicated that, for 

both relaxation LRI and LR2, computing the 
penalties for all possible allocations at each 
subgradient iteration had little effect on the 
convergence of the procedure. Accordingly the 
penalty tests carried out at each subgradient itera- 
tion were :  

(1) For LRI and LR2 the tests to identify 
vertices as medians/non-medians; 

(2) For LR2 the test on the maximum alloca- 
tion cost flj. 

If no optimal solution was found at the initial 
node, then the set of lagrange multipliers corre- 
sponding to z~, the maximum lower bound, were 
recalled and the penalty tests for all possible alloc- 
ations using this set of multipliers performed. 
Typically this removed a large percentage of the 
possible allocations. 

6.2. The tree search nodes 

Thirty subgradient iterations were performed at 
the tree search nodes with the initial set of lagrange 
multipliers being the best set associated with the 
previous node. A value of ¢r (eq. (46)) equal to one 
was used and the same penalty tests that were used 
at the initial tree node were performed at every 
node. 

7. Results 

The algorithm was programmed in FORTRAN 
and run on a CDC 7600 machine, (using the FTN 

node lower bound 2876.82 
upper bound 2894.0 

2 8 7 6 . 8 3  Q 2876.82 B 

U 2876.84 t25) |25j 2878.47 R 

W 2 8 8 3 . 0 1 ~ )  3~.8) V T 3 ~ )  3~.8~2913.87 S 

/ \ I n f e a s i b l e  2 8 9 7 . 9 6  • 

Y 

2 8 9 4 . 4 8  2 8 9 4 . 0 3  

J 2876.83 

N 2 8 8 0 . 4 1  

2 8 7 6 . 8 2  H 

~ 2908.95 X 

/ 

o® 
2 8 9 5 . 3 8  

2897.0 

2887.06 c 

2887 .9O D 

~ 2894 E 

Optimal 
Solution 

P o 2882. K 

29o4 . ,s  z9o9. l z  

M ~'9~ 9 ~  L 
2894.15 2979.0 

Fig. I. The tree search for p = 5, n = 150, Relaxation LRI. 
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compiler), for a number of randomly generated 
problems. For all of these problems the randomly 
generated allocation cost matrix (d,j) was sub- 
jected to Floyd's [4] algorithm to ensure that the 
triangularity condition was satisfied. 

Other authors have indicated that the p-median 
problem is hardest to solve for p =1V[/3 so for 
the larger problems with ]V[=75, 100, 150 we 
solved p = 25, 33 and 50 respectively. 

Table 3 shows the results for the problems using 
both relaxations LR! and LR2. The duality gap at 
the initial tree node is measured by 

propriate value of p. The computational strategy 
used in the dual ascent phase at the initial tree 
node and in the tree search was identical to the 
strategy adopted by Erlenkotter in reporting his 
results. 

It can be seen from Table 3 that relaxation LRI 
always produced a lower duality gap at the initial 
tree node than either LR2 or Erlenkotter's algo- 
rithm. For the problems with IV I = 30 the Eden- 
kotter algorithm is an order of magnitude faster 
than relaxation LRI but for the larger problems 
the two algorithms become competitive. 

(optimal value - lower bound at initial node) 

(optimal value) 

× 100%. 

It can be seen from that table that relaxation LR! 
is superior to relaxation LR2 and that for only 3 
of the 19 problems considered was any branching 
required with relaxation LRI. The time quoted 
excludes the set-up time needed to generate the 
allocation cost matrix. 

Figure I shows the tree search for problem 15 
(relaxation LRl). A number x (x)  inside the circle 
representing a node implies that vertex x is chosen 
to be (not to be) a median. The number beside 
each node is the value of the lower bound at the 
end of the lagrangean ascent for that node. The 
trce search was generated in a depth-first manner. 
The letters next to the nodes indicate the order in 
which they were generated (A first, B second, etc.). 

The difficulty in using the Erlenkotter [3] algo- 
rithm for the p-median problem lies in choosing 
the fixed cost to be associated with each median 
vertex, as the Erlenkotter algorithm balances the 
fixed costs of the median vertices against the varia- 
ble costs of allocation in choosing an optimal 
solution. A fixed cost must be chosen that will 
produce exactly p median vertices in the optimal 
solution (note that there may not exist a set of 
fixed costs which will give exactly p median vertices 
in the optimal solution). Consequently in the re- 
sults for the Erlenkotter algorithm shown in Table 3 
we present the nvmber of cost iterations we re- 
quired before finding a fixed cost that gave exactly 
p median vertices and the time quoted is the time 
over all ¢ost iterations (again this time excludes 
the set-up time needed to create a sorted cost 
matrix). For 4 of the problems no integer fixed 
costs could be found that would lead to the ap- 
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