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ABSTRACT

An exchange economy is considered, where agents (insurers/banks) trade risks.
Decision making takes place under distorted probabilities, which are used to
represent either rank-dependence of preferences or ambiguity with respect to
real-world probabilities. Pricing formulas and risk allocations, generalising the
results of Bühlmann (1980, 1984) are obtained via the construction of aggregate
preferences from heterogeneous agents’ utility and distortion functions. This
involves the introduction of a novel ‘collective ambiguity aversion’ coefficient.
It is shown that probability distortion changes insurers’ behaviour, who trade
not only to share the aggregate market risk, but are also found to bet against
each other. Moreover, probability distortion tends to increase the price of insur-
ance (increase asset returns). While the cases of rank-dependence and ambi-
guity are formally similar, an important distinction emerges as for rank-dependent
preferences equilibria are determinate, while for ambiguity they are generally
indeterminate.

1. INTRODUCTION

Equilibrium asset pricing models of financial and insurance markets have been
extensively studied in the economics, financial and actuarial literature. A pio-
neering paper in the subject area is by Borch (1962), whose approach was con-
tinued by Bühlmann’s (1980, 1984) celebrated pricing models. Useful overviews
are provided by Duffie (2001) and Aase (1993, 2002). The purpose of this paper
is to provide asset pricing and risk sharing models, which address two distinct
issues that are not present in the classic insurance/asset pricing literature. The
first concerns the violations of utility theory frequently observed in practice,
which can be explained by a distorted perception of probability by economic
agents (Quiggin, 1993). The second issue is the presence of Knightian uncertainty
or ambiguity in financial markets. It was argued by Knight (1921) that there
persists significant uncertainty in markets, not only with respect to the future
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states of the world, but also with respect to the probabilities of those states.
Besides the main goal of determining asset prices in the above situations, we
are interested in asking questions such as: What are the characteristics of equi-
librium allocations when agents operate under a distorted probability and do
not conform to the expected utility paradigm? How are market prices affected
by ambiguity? Do diverging beliefs create additional incentives for trading?
How can one express ambiguity on a market-aggregate, rather than agent-specific
level?

The above issues are studied within the analytical framework provided by
distorted probabilities. Distorted probabilities arise from the application of
non-linear functions on probability measures and allow three distinct interpre-
tations. The first is in the context of preferences modelled by Rank-Dependent
Expected Utility (RDEU) theory (Quiggin, 1982; 1993), where the probability
distortion is seen as reflecting the effect of distorted perception of probability
by economic agents. Experimental evidence suggests that such a distortion is
a common feature of decision making under risk and leads to violations of the
expected utility paradigm, e.g. to phenomena such as the Allais paradox, the
common ratio effect and preference reversal (Quiggin, 1993). Distorted prob-
abilities can also be shown to give rise to a set of probability measures or ‘pri-
ors’, whose presence can be seen as a representation of Knightian uncertainty.
This second interpretation of probability distortion, gives rise to an economic
decision model under ambiguity known as Choquet Expected Utility (CEU)
(Schmeidler, 1989). A third interpretation, not discussed in detail in this paper,
relates the use of distorted probabilities in constructing functionals (Denneberg
(1990), Wang (1996)) that are consistent with the coherence axioms of Artzner
et al. (1999) for risk measures used to set regulatory capital requirements.

Apart from reflecting individual preferences that are inconsistent with
expected utility theory, distorted probabilities can be employed to explain par-
ticular economic phenomena that the classical model fails to address. Classic
utility theory implies that agents’ risk allocations are shares of the market risk
portfolio. However this is not the case in practice for a variety of reasons, includ-
ing market incompleteness and asymmetric information. The framework of dis-
torted probability shows that a ‘betting’ behaviour produced by rank-dependent
preferences and ambiguity could be an additional reason behind this. Another
important phenomenon for which our framework can provide explanation is
the equity premium puzzle (Mehra and Prescott, 1985), that is, the observation
that asset returns are higher than what a utility-based model would predict.
Moreover, it is noted that the emergence of risk sensitive regulation in recent
years (e.g. Basle, 2003) produces a new set of imperatives for financial institutions.
As distorted probabilities are an effective tool for producing well behaved risk
measures for setting capital requirements, it has been argued that a risk takers
decision problem should include both utility and probability distortion com-
ponents (Tsanakas and Desli, 2003). It is noted that in the latter interpretation,
probability distortion is introduced in a normative rather than descriptive way,
as it reflects regulatory imperatives rather than individual preferences.
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Equilibrium models where distorted probabilities are used for representing
agents’ preferences have been studied in the literature, usually with the inter-
pretation of CEU as a model for ambiguity. Dow and Werlang (1992) studied
the problem of portfolio choice under ambiguity and showed that when an agent
can invest into one risky and one risk-free asset, there is an interval of (exoge-
nously given) prices, under which no trade takes place in the risky asset. Epstein
and Wang (1994) and Chen and Epstein (2002) develop dynamic representative
agent asset pricing models, using generalisations of Gilboa and Schmeidler’s
(1989) maxmin expected utility model. No-trade intervals and indeterminacy
of the resulting equilibria, are features of these models too. Characterisations
of Pareto optimal allocations are given in Chateauneuf et al. (2000) and Dana
(2002).

In this paper we study an risk exchange economy, similar to the one con-
sidered by Buhlmann (1980, 1984), with the difference that economic agents’
decision-making takes place under a distorted probability. Each agent is thus
characterised by a utility and a distortion function. We determine equilibrium
prices and risk allocations, thus providing the basis for an insurance/asset pric-
ing model. In the context of the risk exchange the different interpretations of
distorted probability are treated to some extent concurrently, due to the formal
similarity between the models. Thus we discuss equilibria and determine price
functionals, when agents’ preferences are characterised by RDEU and when
agents are ambiguous about the probabilities of future events (CEU). It is noted
that as the paper is primarily about Pareto optima, conditions for existence of
equilibrium are not discussed. The particular analytical tool that enables us
to solve the posed preference maximisation problems is the concept ‘quantile
derivatives’ (Tasche, 2000), which proves useful for the differentiation of func-
tionals involving distorted probabilities.

In equilibrium models with heterogeneous agents, a standard technique for
calculating prices is to construct the preferences of a fictional ‘representative
agent’ (e.g. Duffie, 2001) and then determine prices as marginal costs to this
agent. We carry out a construction of aggregate preferences under distorted
probabilities. Such preferences are expressed in terms of two quantities which
we call ‘collective risk and ambiguity aversions’. While the collective risk aver-
sion is the usual (e.g. Wilson, 1968) inverse of the sum of agents’ Arrow-Pratt
risk tolerances, the notion of collective ambiguity aversion is introduced in
this paper. If we interpret collective ambiguity aversion and the associated dis-
tortion function as a quantifier of ambiguity at market level, it is shown that
ambiguity, as opposed to ordinary risk, cannot by ‘diversified away’ by trading
in a market.

As one of our aims is to present a pricing model, we obtain explicit and trans-
parent pricing formulas for traded risks, as well as for the equilibrium risk allo-
cations. The price density depends on two factors, one relating to collective risk
and one to collective ambiguity aversion, and can be seen to be a generalisa-
tion of the pricing formulas obtained by Bühlmann (1980, 1984). It is shown
that the effect of Knightian uncertainty is to inflate asset returns (equivalently
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to increase the price of insurance). As already observed by Epstein and Wang
(1994), this implies that ambiguity is one of the candidate explanations for
the equity premium puzzle (Mehra and Prescott, 1985). It is a contribution of
this study that such reduction in asset may also be due to rank dependence of
preferences.

Agents’ equilibrium risk allocations also consist of two parts, relating to
risk and ambiguity aversion respectively. If we interpret distortion functions
as generators of ambiguity, the latter part of the allocation only occurs due to
agents’ diverging beliefs. It is shown that, given the presence of aggregate risk in
the market, risk aversion causes the agents to share that risk, while ambiguity
provides an incentive to bet against each other. If all agents are characterised
by the same distortion function, such betting behaviour vanishes and trading
takes place only in relation with sharing the aggregate market risk. It is noted
that betting behaviour has been produced by previous models, such as Wilson’s
(1968), which considers diverging beliefs in the context of Savage expected
utility. The present paper shows that rank dependence of preferences as well as
diverging beliefs cause incentives for betting.

Equilibrium models where agents are characterised either by a distorted
perception of probability or by ambiguity are solved concurrently. However,
an important difference arises relating to the determinacy of the equilibrium.
In the case of RDEU the equilibrium calculated in the paper is completely
determined, while in the case of CEU it is not. Mathematically, this follows from
the fact that ambiguity is not represented uniquely by a distortion function;
different representations give rise to different equilibria. While in the equilibrium
with RDEU it is implicitly assumed that all agents agree on a probability, in
the case of ambiguity agreement on a (reference) probability measure would
be meaningless. On the other hand, if the agents’ ambiguous beliefs are
characterised by the same sets of probabilities, in effect an agreement becomes
possible and the indeterminacy vanishes.

The structure of the paper is as follows. In Section 2 we introduce the
preference functionals used in the paper, along with a discussion of risk and
ambiguity aversion, as defined for the purposes of the present investigation. In
Section 3 the equilibrium models for Rank Dependent and Choquet Expected
Utilities are presented. Pricing and risk allocation formulas are given, and the
effect of ambiguity, the (in)determinacy of equilibrium, and the concept of col-
lective preferences, are discussed. Conclusions from the paper are summarised
in Section 4.

2. PREFERENCES

2.1. Preference functionals

A one-period economy is considered. At time 0 economic agents (e.g. financial
institutions, insurance companies) make decisions concerning their consump-
tion of assets and liabilities with random payoffs. At some fixed future time t
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the state of the world is revealed and gains and losses are realised. A proba-
bility space (W,�0,F ) is defined, where W is the set of all possible states of the
world at time t, �0 is a probability measure (which will be interpreted according
to the context as either the actuarial ‘real-world’ probability or just a reference
measure), and F ⊂ 2W is a s-algebra with respect to which random variables
are measurable, representing the amount of information available to agents at
time t. We consider a set, X , of square-integrable random variables on this
probability space, which represent investment opportunities available to the
market agents. For technical reasons we assume that elements of X have con-
tinuous conditional densities in the sense of Tasche (2000).2 Elements of X are
henceforth called positions. We denote by E [·] the expectation operator under
�0 and use the notation SX (x) = �0(X > x) for the decumulative (survival) dis-
tribution function of X ∈X .

For each market agent, a preference relation ‘*’ is defined on X , associated
with a preference functional V : X 7 �, i.e. V(X) ≥ V(Y) + X *Y. (It is in fact
the owners of the financial institutions / insurance companies that are endowed
with preferences rather than the companies themselves. Individuals owning the
companies’ random portfolios have preferences over end-of-period consump-
tion, which in the present one-period setting corresponds to random wealth).
The preference functional is given by:

) ) ,X h S dx h S dx1,u h u X u X
0

0
= - +

3

3-
( (V ##] __ _g i i i (1)

where u is an increasing and concave utility function and h is an increasing
and convex probability distortion function with h(0) = 0 and h(1) = 1. The set
function h(�0) is called a distorted probability. The above preference functional
emerges as a generalisation of the von Neumann-Morgenstern (1947) expected
utility operator; in fact, when h is linear, equation (1) reduces to an expected
utility. There are two possible interpretations of the effect of the probability dis-
tortion h.

The first interpretation, in the context of Rank-Dependent Expected Utility
(Quiggin, 1982), is a behavioral one. Under such a light, the probability distor-
tion h is related to the perception of probability by an economic agent. It has
been observed (e.g. Quiggin, 1993) that agents often tend to overstate the prob-
ability of adverse events. Note that an adverse event is not understood here by
the value itself of the random variable X, but by its rank among all possible
outcomes. It is noted Quiggin’s (1993) development considers a different for-
mulation of the preference functional: Vu,h(X ) = u# (x)d (g � FX (x)). This
can be derived from (1) by integration by parts and setting g(s) = 1 – h(1 – s).
The reason for using the slightly more complicated expression (1) is to achieve
consistency with Choquet Expected Utility discussed below.

RISK EXCHANGE WITH DISTORTED PROBABILITIES 5

2 The assumption of continuity is a sufficient condition for the differentiability of preference func-
tionals, see Lemma 6. For an alternative approach see Carlier and Dana (2002).



An alternative interpretation relates to the study of preferences under Knight-
ian uncertainty, in the sense of ambiguity with respect to the probability dis-
tribution of the underlying risks. The distorted probability can be viewed as
a set function g = h(�0). Moreover, when h is increasing and convex, the set
function g is supermodular, i.e. g (A∪ B) + g (A∩B) ≥ g (A) + g (B), A,B ∈F
(Denneberg, 1994). Then, the preference functional (1) is re-expressed as the
Choquet integral:

> > .X u X d u X x dx u X x dxg g g1,u g
0

0

= = - +
3

3-
V ###] ] ]^^ ]^g g g h h g h (2)

Choquet integrals are defined with respect to monotone set functions (or
‘capacities’) instead of additive measures (Choquet (1954), Denneberg (1994)).
The preference functional (2) can be derived from a set of axioms (Schmeidler,
1989), and is called a Choquet Expected Utility.

The relationship of Choquet expected utility to Knightian uncertainty can be
seen via the representation of the supermodular set function g and the respective
preference functional (2) through sets of probability measures (Denneberg, 1994):

,inf inf�A A A u X d E X Xg gF X
� �

�
g g

! != =
$ $

, , .#] ] ]g g g 6 @ (3)

Thus, the preference functional can be understood as the minimal expected
utility with respect to a set of probability measures induced by the set func-
tion g. The fact that a set of probability measures is used instead of only one
reflects ambiguity with respect to the actual probability distribution of the risk
X ∈X . That expected utility is evaluated at the infimum with respect to that set
of measures reflects the aversion of economic agents to such ambiguity. We note
that this interpretation of the distortion function, the probability measure �0

is no more a ‘real-world’ probability but just a reference measure used in rep-
resenting the capacity, g, via a distorted probability, h(�0). Technical conditions
under which such a representation is possible are studied by Gilboa (1985) and
Wanget al. (1997).

We conclude this section by stating the set of assumptions on utility and dis-
tortion functions that are used throughout the paper. Utility functions are strictly
increasing, strictly concave, continuous and twice differentiable. Distortion func-
tions are strictly increasing, strictly convex, continuous and twice differentiable.
Furthermore, we assume throughout that the economic agents characterised
by CEU have capacities which can be expressed by distorted probabilities.

2.2. Risk aversion

In the context of RDEU, the effect of the utility and distortion functions is
quite different, though difficult to disentangle. Considering the relationship
between RDEU and risk aversion as expressed through the concept of mean
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preserving increase in risk (MPIR) (Rothschild and Stiglitz, 1970), Chew et al.
(1987), have shown that: (i) a preference relation displays aversion to MPIR,
in the sense that every mean preserving increase in risk reduces the value of
the preference functional, if and only if the utility function is concave and the
distortion function is convex; and (ii) one preference relation is more averse to
MPIR than another if and only if the utility and distortion functions of the for-
mer are respectively concave and convex transformations of those of the latter.

On the other hand, in the context of Schmeidler’s (1989) model of preferences
under ambiguity, the convexity of the capacity g (and therefore of the distor-
tion function) is a mathematical precondition for representing the preference
functional as a minimal expected utility with respect to a set of probability
measures. In that sense convexity of the distortion function reflects ‘ambiguity
aversion’.

The concavity of the utility function is usually characterised through the
Arrow-Pratt coefficient of risk aversion:

Definition 1. The coefficient of risk aversion associated with a (twice differen-
tiable) utility function u is defined as

r(x) = .u x
u x

�
�

- ]] gg (4)

For the purposes of this investigation, we proceed to characterizing the con-
vexity of a distortion function in a very similar way:

Definition 2. The coefficient of ambiguity aversion associated with a (twice
differentiable) distortion function h is defined as

t(s) = .h s
h s

�
�]] gg (5)

The term ‘ambiguity aversion’ relates to the interpretation of the distortion
function as a way of generating a set of probability measures; as will be shown
below, the more convex h is, the larger is the set of measures {� : � (A) ≥
h(�0(A)) ∀A ∈F } induced by it and thus the higher the ambiguity surround-
ing the probability distribution. Even though in this paper the distortion function
is not used exclusively in the CEU context, we will use for simplicity the term
‘ambiguity aversion’ throughout. It is noted that the differential equations (4)
and (5) can be solved to determine uniquely a utility (up to an affine transfor-
mation) and a distortion function.

The above definitions of risk and ambiguity aversion coefficients relate to the
comparison by Chew et al. (1987) of preference functional in terms of their
aversion to MPIR, as shown below.

Lemma 1. (i) An agent characterised by a utility function, u, and a distortion func-
tion, h, is averse to MPIR if and only if the associated risk and ambiguity aversion
coefficients are non-negative, i.e. r(x) ≥ 0 ∀x ∈� and t(s) ≥ 0, ∀s ∈ [0,1].
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(ii) An agent characterised by utility and distortion functions, u1, h1, respectively
is more averse to MPIR than another with utility and distortion functions,
u2, h2, if and only it holds for the associated risk and ambiguity aversion coeffi-
cients that r1(x) ≥ r2(x) ∀x∈� and t1(s) ≥ t2, ∀s ∈ [0,1].

Proof :

(i) Follows trivially from Chew et al. (1987), as positivity of the risk and
ambiguity aversion coefficients guarantee the concavity and convexity of
the utility and distortion functions respectively.

(ii) We must show that the condition r1(x) ≥ r2(x) ∀x∈� (resp. t1(s) ≥ t2, ∀s ∈
[0,1]) is equivalent to u1 (resp. h1) being a concave (resp. convex) transfor-
mation of u2 (resp. h2) .

If u1(x) = c(u2(x)), where c is an increasing and concave function,

u�1(x) = c�(u2(x)) u�2(x), u�1(x) = c�(u2(x))(u�2(x))2 + c�(u2(x)) u�2(x) (6)

Thus

u u
2

x

u x
c u x

c u x u x

x

u x
x xr r

2

2
& $- = - -

� �

2

2

� �

�

1

1

� 1 2

�

]
] ]]̂^ ]

]
] ] ]g

g ghgh g
g
g g g (7)

Conversely, if r1(x) ≥ r2(x) + r1(x) = r2(x) + f (x), f (x) ≥ 0, then we can define
the increasing and concave function:

,expc x f t dt dy
( )u yx 1

= -
33 --

-

2##] ]eg g o (8)

It is then easy to show that

2 ,f x c u x
c u x u x

2

2
= -

�

�

�] ]]̂^ ]g ghgh g
(9)

which, given r1(x) = r2(x) + f (x), yields u1(x) = c (u2(x)).

The proof for the distortion functions is the same. ¡

Finally, in the context of ambiguity represented by distorted probabilities, it
can be shown that comparing the ambiguity aversion coefficient associated
with two agents provides a comparison of the ambiguity characterizing each.

Lemma 2. Let two agents’ preferences be characterised by Choquet Expected
Utility and their respective supermodular capacities can be represented as h1(�0)
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and h2(�0). Define the ambiguity aversions t1, t2 by (5) and the sets P1 = {� :
�(A) ≥ h1(�0(A)) ∀A ∈F } and P2 = {� : �(A) ≥ h2(�0(A)) ∀A ∈F } represent-
ing the agents’ ambiguity. Then, t2(s) ≤ t1(s) ∀s ∈ [0,1] implies that P2 ⊆ P1.

Proof:

From Lemma 1ii) it can be seen that t1(s) ≥ t2(s) implies that h1(s) = c(h2(s)),
where c is an increasing convex function with c(0) = 0, c(1) = 1. This in turn
implies that h1(s) ≤ h2(s) ∀s ∈ [0,1] which yields P2 ⊆ P1.

3. RISK EXCHANGE

3.1. General setup

Let n agents, standing for financial institutions ((re)insurance companies, banks
etc), be participating in an exchange economy, similar to the one defined by
Borch (1962) and Bühlmann (1980, 1984). Each holds an initial endowment
Xi ∈X , i = 1,…, n (random assets and liabilities including cash), which can be
traded in the exchange. Let F be the s-algebra generated by the initial endow-
ments Xi , i = 1,…, n. Agents can acquire through trading any position Y ∈X
that is measurable with respect to F, that is, the positions available to traders
are restricted to functions of the Xi’s. Additionally we assume that a safe
asset 1W with unit price and unit payoff is traded in the market; this implies zero
interest rates.3 We assume that market prices are given by a linear functional
p(X ) = E [hX ], where h∈L2(W,�0,F ). The price of the safe asset is 1, hence:

p[1W ] = 1 & E [h] = 1. (10)

Agents are characterised by preference functionals of the form (1). Each agent
is equipped with a strictly increasing and concave utility function ui and a
strictly increasing and convex probability distortion hi, i = 1,…, n, both ui and
hi being continuous and twice differentiable. We denote the ith agent’s preference
functional as Vi . The ith agent decides on his optimal investment by maximizing
his preference functional, subject to a budget condition:

i

max
Y

Vi (Yi), such that p(Yi) ≤ p(Xi). (11)

As discussed in Section 2.1 these preference functionals can be associated either
with RDEU or with CEU. Due to the formal similarity of these two models, they
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are treated concurrently in the sequel. However, an important difference arises
relating to the determinacy of equilibrium, which is discussed in Section 3.5.
Furthermore, an implicit assumption used in the sequel is that, if the preference
functional is associated with Choquet expected utility, all agents’ capacities
can be expressed as distortions of the same probability measure. This has two
consequences. One is that all capacities have the same null-sets. The other is
that the sets of probability measures associated with each agent have a non-
empty intersection (it is easy to see that the reference measure will belong to
all those sets, e.g. �0(A) ≥ h (�0(A)), A ∈F .

3.2. Necessary conditions for equilibrium

We define the aggregate risk in the market as jj 1=Z n
= X! . The economy will be

at equilibrium if and when all agents have solved their preference maximisation
problem (11) and the market has cleared:

j .Z
j

n

1

=
=

Y! (12)

The optimisation problem (11) has Lagrangian:

Vi (Yi ) – li (p(Yi ) – p(Xi )). (13)

The following lemma yields a necessary condition for equilibrium, which can
be viewed as a generalised version of Borch’s (1962) characterisation of Pareto
optima.

Lemma 3. (i) At equilibrium each agent’s risk allocation, Yi , is related to the price
density, h, via the relationship

u�i (Yi ) h�i (SYi
(Yi )) = li h, i = 1,…, n. (14)

(ii) The risk allocations to the agents, Y1,Y2,…,Yn are comonotonic random vari-
ables.

Proof:

(i) To solve the maximisation problem (11) we proceed using some standard
methodology from variational calculus. For N ∈X we define f (b) = Vi (Yi +
bN ) – li (p(Yi + bN ) – p(Xi)). In order that the objective function of (11)
achieves an optimum at Yi it must be, f �(0) = 0, ∀N ∈X . From Lemma 6
we obtain:

f �(b ) = E [Nu�i (Yi + bN ) h�i (SYi + bN (Yi + bN ))] – li p(N ). (15)
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Thus:

f �(0) = E [Nu�i (Yi ) h�i (SYi
(Yi ))] – li p(N ) = 0 ∀N ∈X , (16)

which yields condition (14).

(ii) Consider equation (14). Since both ui and hi are strictly increasing, li > 0.
Consider now the function ji (x) = (1/li) u�i (x) h�i � SYi

(x) . The first deriva-
tive of ji is strictly negative

j�i (x) = l
1

i
(u�i (x) h�i � SYi

(x) – u�i (x) h�i � SYi
(x) fYi

(x)) < 0, (17)

since the functions u�i h�i are strictly decreasing and increasing respectively.
Thus ji is strictly decreasing. Therefore its inverse ji

–1 exists and is also
strictly decreasing. We observe that all random variables Yi = ji

–1(h) are
strictly decreasing functions of the random variable h. Hence Y1,Y2,…,Yn

are comonotonic. ¡

Comonotonic risks are characterised by the strongest form of positive statis-
tical dependence. An economic interpretation of comonotonic risks is that
they cannot be used as hedges for each other (Yaari, 1987). The fact that the
final positions Yi are comonotonic has the interpretation that agents have ridded
themselves of the individual risk embedded in their initial endowments Xi and
are left only with the market’s systemic risk. Thus, our model is consistent with
a well known tenet of capital asset pricing. Moreover, it has been shown that
comonotonicity of the risk allocations Yi is a precondition for efficient spread-
ing of the market risk to the agents (Landsberger and Meilijson, 1994).

Comonotonicity of the random variables Y1,Y2,…,Yn has two important
consequences which will prove useful in the sequel. These are summarised below.

Lemma 4. The following properties of comonotonic random variables hold:

a) The comonotonic random variables Yi , i = 1,…, n are also comonotonic to
(increasing functions of) their sum Z.

b)
FYi

(Yi ) = FZ(Z ) = U a.s., ∀i = 1,…, n, (18)

where U is uniformly distributed on the unit interval.

Proof: E.g. Dhaene et al. (2002).

3.3. Solution for exponential utility and distortion functions

Before proceeding with the calculation of equilibrium prices for more general
utility and distortion functions, we study the case of exponential utility and
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distortion. This situation gives rise to simple and transparent solutions, as well
as providing a generalisation of Bühlmann’s (1980) pricing formula and a dis-
torted probability version of the well-known Esscher transform.

Let each agent have an exponential utility function with risk aversion ri > 0
and an exponential distortion function hi with ambiguity aversion ti > 0:

t

t

, .u x e h s
e
e

r
1 1

1
1

i

s
r i

i

i

= - =
-

--

i

x
i] ` ]g j g (19)

The first and second derivatives of these functions are:

u�i (x) = e–ri x > 0, u�i (x) = –ri e
–ri x < 0. (20)

h�i (s) = i
t

t

e
et

1

s

i

i

-
> 0, h�i (s) = t

t
i

e

et

1

s2

i

i

-
> 0. (21)

In the sequel, the following rewriting of h�i (SYi
(Yi )) will also be used:

h�i (SYi
(Yi )) = t

t

i

i

.
E e

e
i Y

i Y

-

-

F Y

F Y

i

i

]
]

g
g

8 B (22)

We now define two quantitities which prove useful in the sequel.

Definition 3. In the risk exchange with exponential utility and distortion functions,
the collective risk aversion, r, and the collective ambiguity aversion, t, are defined
by the equations:

j

j j
, .r r t r r

1 1
j

n

j

n

1 1

= =
= =

t! ! (23)

The collective risk and ambiguity aversions are treated for the time being only
as notational simplifications. Their meaning will be discussed in Section 3.6.
We note here that the formula for collective risk aversion is well known (e.g.
Bühlmann, 1980), while the formula for collective ambiguity aversion is being
introduced in this paper.

The following result provides a simple formula for the equilibrium price den-
sity, h.

Proposition 1. In the risk exchange with exponential utilities and distortions the
equilibrium price density, h, has the form:

.
E e

eh Z Z
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8 B (24)
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Proof: Condition (14) for equilibrium that was derived earlier yields:

e–riYi h�i (SYi
(Yi )) = li h & Yi = r

1
i
ln(h�i (SYi

(Yi ))) – r
1

i
ln(h) – r

1
i
ln(li). (25)

By summing both sides of the above equation over i and taking into account
the clearing condition (12) we obtain:

Z =
j

lnr
1

j

n

1=

! (h�j (SYj
(Yj ))) –

j
lnr

1
j

n

1=

! (h) –
j

lnr
1

j

n

1=

! (lj). (26)

The first term of the right-hand side becomes:
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(27)

Now, by putting together equations (26), (27) and (23) we obtain:

j
j

.ln ln lnZ U E er
t

r h r
1 1U

j

n

j

n
t

1 1

j r
1

= - - - -
-

= =

j l% !] _g i9 C (28)

We set the constant, j
jj 1= j 1=

.ln lnE eK r r
1Un t j r

1

= - +
- j ln% ! _d in9 C Then equa-

tion (28) becomes:

rZ + tU = K – lnh & h = e–rZ – tUeK. (29)

Since we have assumed that there exists in the market a risk-free asset 1W with
unit price, from (10) we obtain:

E [h ] = 1 &
( )29

E [e–rZ – tUeK ] = 1 & eK = E [e–rZ – tU ] –1. (30)

Substituting exp(K) in (29), we obtain formula (24) for the price density. ¡

Note that formula (24) is a generalisation of the Esscher transform, which was
obtained by Bühlmann (1980), who studied a market model where agents’ pref-
erences are characterised by exponential utility functions. The probability
weighting factor exp(–rZ ) in the price density associates the price of a traded
position with the random value of the market portfolio Z. The fact that it is
a decreasing function of Z has the interpretation that a position, which is likely
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to assume a high value when Z is low, is traded at a high price because of its
usefulness in hedging market risk. On the other hand, the additional proba-
bility weighting exp(–tFZ(Z )) that is introduced here is due to the probability
distortions and associates the price of a position with the rank of the out-
come of Z, in the set of possible outcomes. For this factor, the absolute value
of Z is not of interest, but rather the ranking of its possible outcomes, induced
by the application of its cumulative distribution function, FZ. That the price
density is a decreasing function of FZ(Z ) has again the interpretation that a
position, which is likely to assume a high value when FZ(Z ) is low, is traded
at a high price because of its usefulness in hedging. However, hedging now
takes place not with respect to the absolute level of market risk, but with
respect to its rank among all possible outcomes; in that sense this is not hedg-
ing against losses, but hedging against scenarios.

The effect of a change in collective risk or ambiguity aversion is not easily
glanced from (24). However, by expanding p(X ) for small values of r and t,
and considering only first order terms one obtains p(X) ≈ E [X ] – rCov(X,Z) –
tCov(X,FZ(Z)), which could in effect be viewed as a generalised version of the
Capital Asset Pricing Model formula. Form that it is apparent that increases
in the collective risk or ambiguity aversion coefficients lead to a decreases in
the price of an instrument that is positively correlated to the aggregate risk.
This is equivalent to saying that asset returns will increase and that insurance will
become more expensive. Intuitively this makes sense as one would expect
increased risk and ambiguity aversion would drive agents to require higher returns
on their risky investments. Moreover, the parameter t introduces an increase
in prices not captured by classical utility-based models; ambiguity aversion
can thus be viewed as a possible explanation for the ‘equity premium puzzle’
(Mehra and Prescott, 1985). In the CEU interpretation of distortion functions,
Knightian uncertainty is the reason behind such an increase in market prices,
a point already argued by Epstein and Wang (1994). Our framework addition-
ally shows that rank-dependence of preferences may also be the reason behind
asset returns that exceed utility theory’s predictions.

We can now explicitly calculate the agents’ final positions Y1,Y2,…,Yn.

Proposition 2. In the risk exchange with exponential utilities and distortions the
risk allocations Y1,Y2,…,Yn are given by

Yi = r
r

i
(Z – p(Z)) + i

r
t t

i

-
(FZ(Z ) – p(FZ(Z ))) + p(Xi ), i = 1, 2, …, n. (31)

Proof: Equations (25), (24) yield:
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-
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-

- -

- -

- -

-

iY

i i i

Y

J

L

K
KK

N

P

O
OO

8 8
8

B B
B

(32)
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From the constraint in (11) we obtain (the equality being a consequence of the
strict positivity of the lagrangian multiplier li (14)):

ii

i
i

t

.ln
E e

e E Z U E

p p

r l r
r

r
t t

h h1
i Z U

U

r t

i

&=

- = - +
-

+
- -

-

i i i

Y X

X
J
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K
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^ ^
d

N

P

O
OO

h h
n8 < 6B F @ (33)

Substituting (33) in (32) yields Yi . ¡

It can easily be seen that, as expected, the share of the aggregate risk that the
ith agent holds after the exchange decreases as his risk and ambiguity aversion
coefficients increase. Specifically, Yi depends on how they compare with the cor-
responding collective risk and ambiguity aversions. Note that the risk alloca-
tion Yi consists of two terms: the first is a proportional share of the aggregate
risk Z, due to risk aversion, and the second a proportional share of FZ(Z ),
due to ambiguity aversion. Regarding the latter, it depends on the difference
between the individual and collective ambiguity aversions t – ti ; if they are equal
it vanishes. Furthermore, the aggregate traded share of FZ (Z ) is zero, since

j 1= .0r
t t

j

j
=

-n! In the context of ambiguity, we can interpret the trading in FZ(Z)
as agents’ with diverging beliefs betting against each other. In that sense, ambi-
guity can be a source of trading, as discussed in Billot et al. (2000). It is noted
that betting behaviour has been produced by older models, such as Wilson’s
(1968), which considers diverging beliefs in the context of Savage expected utility.
The above results show that rank dependence of preferences as well as diverg-
ing beliefs can cause incentives for betting. The reason behind this is that under
the rank-dependent model agents’ probabilities are re-weighted by h�i (SYi

(Yi )).
Mathematically this corresponds to a change of probability measure and is thus
akin to diverging beliefs.

3.4. Solution for the general case

We now proceed with the calculation of the equilibrium price density, for the
case where agents’ preferences are characterised by more general utility and dis-
tortion functions.

In Section 3.2 it was shown that at equilibrium the agents’ final positions
Yi will be comonotonic to each other, as well as to their sum Z. Thus for each
i =1, …, n, Yi can be written as an increasing function ci of Z, Yi = ci(Z). From
equation (14) it is then apparent that the price density h will be a decreasing
function ƒ of Z, h = ƒ(Z). Thus, we can rewrite the condition for equilibrium
(14) as:

u�1(ci (Z)) h�1(SZ (Z)) = li ƒ(Z), i = 1,…, n. (34)
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Denoting the ith agent’s risk aversion and ambiguity aversion functions by
ri(x) and ti(s) respectively,

ri(x) =
u x

u x

�

�

i

i ]
]
g
g
, ti(s) =

h s

h s

�

�

i

i ]
]
g
g

(35)

we proceed with the following definition:

Definition 4. In the risk exchange with general utility and distortion functions,
the collective risk aversion, r(x) , and the collective ambiguity aversion, t(S) , are
defined by the equations:

j j

j, .Z
Z

Z Z
Z

S Z
r t r1

jj

n

Z
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(36)

Again the formula for the collective risk aversion goes back to Bühlmann (1984)
and Borch (1985), while the formula for t(S) is being introduced in this paper.

As before, the calculation of the equilibrium price density, h, relies on the
constructs of collective risk and ambiguity aversion.

Proposition 3. In the risk exchange with general utilities and distortions the equi-
librium price density, h, has the form:
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Proof: Taking the logarithmic derivative of both sides of (34) (which will exist
because of our smoothness assumptions) yields
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(38)

where fZ is the probability density function of Z. Substituting the i th agent’s
risk and ambiguity aversions (35) in eq. (38) yields

i
i i

.
z
z

Z
Z Z

Z
Z

S Z
Zc

r
l

r
t�1

i
i Z

Z= - -�
c ci i

f] ]^ ]] ]^ ]^ ]g gh gg ghgh g (39)
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Differentiating the clearing condition (12) yields jj 1= .Zc 1=�n! ] g Thus, summing
over i in (39) using the definition of the collective risk and ambiguity aversions,
r(x) and t(S) we obtain the ordinary differential equation

Z

,

z
z

z
Z
Z

Z Z f Z Z

Ke

l r t
�

) ( ) ) )

Z

x dx S x x dxr t

1

Z Z
ZZ

&= - -

=
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- -
33 --

( ( (
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f

i

##

]] ] ]^ ]^ ]gg g gh gh g
(40)

for some constant K. Eq. (40) and the condition E [z(Z)] = E [h ] = 1 yield for-
mula (37) for the price density. ¡

This price density is a generalisation of the formula obtained by Bühlmann (1984).
Again the market’s ambiguity aversion introduces an additional weighting fac-

tor, .exp y dyt 1
( )F Z

0

Z
- -# ^ h& 0 The discussion in the previous sections of the influ-

ence of ambiguity aversion on the pricing of risk retains its validity in this,
more general setting. In the case of exponential utility and distortion functions
studied in the previous section, the market as well as the individual risk and
ambiguity aversion functions are constant and it is easily seen that equation (37)
reduces to (24).

We now obtain an expression for the risk allocations ci (Z ) = Yi .

Proposition 4. In the risk exchange with general utilities and distortions the risk
allocations Y1,Y2,…,Yn are given by

i ,expY u x dx y y dy Kr t t1 1
( )

i

F ZZ1

0

Z

%= - - - - - -
3

-

-
�i ##b ] ^ ^^l g h hh' 1 (41)

where the constant K is determined by the budget condition p(Yi ) = p(Xi ).

Proof: As mentioned in Section 2.2, from the quantities r(Z) and t(SZ(Z)) we
can determine unique corresponding utility and distortion functions u and h
respectively (up to a normalisation of u). We can rewrite the price density (37) as

,z Z
E u Z h Z

u Z h Z

Z

Z=
S

S
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which yields
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(43)
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Substituting the term
z
z

Z
Z�]] gg in equation (39) results in the differential equation

c�i (Z)ri(ci (Z)) = r(Z) + t(SZ(Z)) – ti(SZ(Z)) fZ(Z). (44)

The definition of the risk aversion coefficient yields c�i (Z)ri (ci (Z)) = – ∂ ln
u�i (ci(Z)) / ∂Z. Hence (44) yields

i ,expu Z x dx s s ds Kr t tZ i Z

ZZ
= - - - -

33 --
i� S Sc ##]^ ] ]^ ]^^gh g gh ghh' 1 (45)

whence (41) follows. ¡

From (41) and (44) we see that, as in the previous section, Yi depends on how
the i th agent’s risk and ambiguity aversions compare to the collective ones.
Observe that in this more general case the Yi ’s do not consist of proportional
shares of Z and FZ(Z ), but are non-linear functions thereof. The trading in
FZ(Z ) can again be interpreted as betting behaviour, similarly to the previous
section. We note that (41) does not provide a closed form solution for Yi , as the
collective risk aversion r does in general depend on the Yi ’s.

3.5. Ambiguity, (in)determinacy and betting

In the previous sections, agents’ distortion functions have been taken to represent
either rank-dependent preferences or ambiguity with respect to probability,
without any distinction being made between these two very different cases.
As mentioned earlier, an important difference is the role played by the proba-
bility measure �0. In the rank dependent case �0 is a ‘real-world’ probability
measure, known by all agents, and the distortion functions affect the subjective
perception of this probability by the agents. Thus the equilibrium prices and
allocations calculated in previous sections completely determine the equilibrium
of the risk exchange.

On the other hand, if distortion functions are interpreted as inducing sets
of probability measures representing Knightian uncertainty, then �0 is just a
reference measure, arbitrarily drawn from a set of probability measures with
the same null-sets. Agents’ probabilistic beliefs are represented by supermod-
ular capacities, which can be obtained by distorting a probability measure from
that set, with the distortion functions generally depending on the reference
measure chosen. This means that the analysis carried out in the previous sec-
tions could be repeated for a different reference measure, say �” 0. Given that
there is no conceivable mechanism by which agents would agree on a reference
measure before trading, if the equilibrium calculated under �” 0 is different than
the one under �0, then the conclusion must be that, in the case of ambiguity,
equilibria are indeterminate.
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To show that this is actually the case, we can restrict ourselves to the case
where utilities are exponential. Consider an agent for whom hi(�0) = hi(�” 0).
As hi, hi will in general be different, the same will hold for the associated ambi-
guity aversions, i.e. ti(s) ! t“ i(s). Note that FZ(Z ) will be uniformly distributed
under both measures and that the individual and collective risk aversions, rj ,
j =1,…, n and r, will be independent of the equilibrium risk allocation and thus
not depend on the reference measure. From (41), it can now be seen that, if
the ti ’S change, other things being equal, the equilibrium allocations change.
Thus ambiguity is a source of indeterminacy.

Consider the case of all agents’ beliefs being represented by the same capac-
ity. It is then obvious that for any reference measure it is ti(s) = t(s)∀s ∈ [0,1],
∀i = 1,…, n. From (41) it can be seen that that this makes the risk allocations
independent of the reference probability measure �0. Thus, in the case of a
shared capacity the indeterminacy of the risk allocations vanishes. Furthermore,
the part of the allocation which is due to ambiguity aversion, is increasing in
the difference between individual and collective risk aversion, that is, in the
degree to which an agents’ beliefs diverge from the average. As discussed in Sec-
tions 3.3 and 3.4, diverging beliefs are a cause of trading, in the sense that it
motivates agents to bet against each other. If all agents’ ambiguity is represented
by the same capacity, then the part of the allocation depending on ambiguity
aversion vanishes for all agents. This is consistent with Chateauneuf et al. (2000),
who showed that risk allocations in the case of a common capacity are the the
same as von Neumann-Morgenstern ones. Thus, under homogeneity of beliefs,
betting ceases. On the other hand, equilibrium prices always depend on col-
lective ambiguity aversion, as can be seen from (37). Therefore even in the case
where agents have the same beliefs, equilibrium prices are indeterminate.

Agents’ betting behavior under diverse levels of ambiguity, allows for a fur-
ther interpretation of the comonotonicity of allocations. When allocations are
comonotonic, agents use the same probability distribution at equilibrium.4

Thus, even though equilibrium does not lead to the resolution of ambiguity,
it yields an implicit agreement between agents, since they behave as if they were
using the same unique probability distribution.

Finally, we note that if the aggregate risk is zero, i.e. Z is a constant, the
risk allocations are also constant, meaning that the lack of aggregate risk yields
full insurance allocations, regardless of ambiguity. This is consistent with Bil-
lot et al. (2000).

3.6. On collective preferences

In the equilibrium models discussed in previous sections, agents’ risk allocations,
Yi , i = 1,…, n, and the price density, h, have been found to be functions only
of the aggregate market risk, Z. Furthermore, the price functional depends only
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on Z and the collective risk and ambiguity aversions, r(x) and t(S) respectively.
The technique of defining collective preferences is not a novelty; it is closely
related to the device of the ‘representative agent’ often employed in the eco-
nomics literature, while the aggregation of preferences has been proposed as a
way of solving equilibrium models by Borch (1962), Wilson (1968), Rubinstein
(1974) and Bühlmann (1980, 1984).

A new element introduced in this paper has been the definition of aggregate
preferences in the cases of RDEU and CEU, using what we called ‘collective
ambiguity aversion’. From the definitions of collective ambiguity aversion (23),
(36) it can be seen that it does not only depend on the ambiguity aversions of
the individual agents, but also on their risk aversions. In fact the collective
ambiguity aversion t is determined as the average of individual ambiguity aver-
sions ti, weighted by the risk tolerances 1/ri. This could appear problematic.
It is however justifiable, considering that collective preferences depend on the
allocation of risks, which in turn depend on the utilities as well as the distor-
tion functions of agents. From equations (31) and (44) it can be seen that the
allocations of risk (i.e. functions of both Z and FZ(Z)) to the agents are depen-
dent on the risk tolerances 1/ri (in the exponential case the risk allocations
are actually proportional to the risk tolerances). It is reasonable that an agent who
ends up buying a larger share of the market risk will also have a larger effect on
aggregate preferences, as the definition of collective ambiguity aversion implies.

It is apparent from the definitions (23) and (36) that the collective risk aver-
sion is lower than that of any agent in the exchange. This can be interpreted
as reflecting the reduction in risk that the possibility of risk sharing and
diversification through the exchange entails. A way to see this is to observe
that the reduction of agents’ risk aversion caused by their participation in the
market also results in a reduction of the price of insurance for a risk. On the
other hand, such reduction does not take place in the case of ambiguity aver-
sion. As collective ambiguity aversion is a weighted average of agents’ individual
ambiguity aversions, it might be greater or smaller than the one of an agent.
This effect can be better understood through the interpretation of the convex
probability distortion functions as reflecting ambiguity with respect to prob-
ability, in the context of Knightian uncertainty. If all agents are uncertain
about the probabilities of future events, there is no reason why adding traders
to the market (provided they are not better informed than the rest) should
reduce such uncertainty; ambiguity cannot thus be ‘diversified away’.

From the collective risk and ambiguity aversions we can determine respec-
tively a utility u and a distortion h, as well as the corresponding preference func-
tional V. Consider now the representative agent, holding Z and with prefer-
ences characterised by V. We define the indifference price of a position X to
the collective, pind (X; Z), as the solution of V (Z – X + pind (X; Z))) = V (Z) and
the marginal cost of X to the collective as:

;
;
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It can then be shown, using the same techniques as in the proof of Lemma 6,
that the marginal cost of X to the collective equals the equilibrium price of X:

;
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This is, of course, just another way to say that at equilibrium risks are priced
under collective preferences.

Finally, we note that an alternative interpretation of collective preferences
is to view the risk exchange at equilibrium as a pooling arrangement, where
agents pool their initial endowments, Xi, i = 1,…, n, and thereafter share the
aggregate risk Z by buying their final positions Yi from the pool, according to
an agreed price mechanism. The analogy between risk exchange and risk pooling
has already been observed by Borch (1962), who commented on the possibility
of applying cooperative game theory to the problem. The marginal cost price
mechanism, which yields equilibrium prices, has a theoretical justification in the
context of cooperative games, as it belongs to the class of semi-values (Dubey
et al., 1981), while it can also be derived from a set of economically motivated
axioms (Samet and Tauman, 1982). The relationship between pooling (coopera-
tive risk sharing) and trading (competitive risk sharing) follows from the como-
notonicity of the risk allocations at equilibrium. Comonotonicity will make all
agents’ fortunes move in the same direction, as it would have been, were they
pooling their risks. It is thus the efficient spreading of risk that comonotonicity
implies, which makes cooperative and competitive economic behavior in some
sense equivalent.

4. CONCLUSIONS

Equilibria in risk exchanges were studied, when agents’ decision making takes
place under distorted probabilities. Distorted probabilities are used to represent
the preference functionals of Rank-Dependent and Choquet Expected Utilities,
which have emerged in recent years as important correctives to the Expected
Utility paradigm. Explicit formulae for the state-price density and risk alloca-
tions were obtained, thus generalizing results obtained by Borch (1962) and
Bühlmann (1980, 1984), who considered expected utility preferences.

The solution of the equilibrium models utilises the construction of collec-
tive preferences. A ‘collective ambiguity aversion’ coefficient was introduced
in the paper to characterise the effect of probability distortion on aggregated
preferences. It was shown that due to probability distortion an additional term
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appears in both the state price density and the allocations of risk to insurers.
The change in risk allocations shows that probability distortion gives to agents
incentives to trade, not only in order to share the aggregate risk, but also to bet
against each other. In the context of CEU, such behaviour can be attributed
to diverging beliefs about the probabilities of future states of the world.

While the RDEU and CEU preference models present some formal simi-
larities, they are quite different in terms of the phenomena they seek to explain.
Thus, while in the case of rank-dependent preferences a known probability
measure is distorted by agents’ perception, in the case of ambiguity a distorted
reference measure is used to represent ambiguous beliefs. Choice of different
reference measures yields different equilibria; hence one concludes that equilibria
under ambiguity are indeterminate.

A. TWO LEMMAS

Let an agent’s preferences be characterised by a utility function u and a dis-
tortion function h. Here we obtain two results concerning the operator Vu, h that
are used extensively in the paper.

Lemma 5. For every X ∈ X , Vu, h(X) = E [u(X)h�(SX (X ))].

Proof: The Choquet integral (1) of u(X) with respect to the supermodular set
function h(�0), admits the following quantile representation (Denneberg, 1994):

Vu, h(X ) = ,G t dt( )u X
1

0

1 -# ] g
where G –1

u(X) (t) is the (generalised) inverse of the (decumulative) distribution
function of u(X) under h(�0),Gu(X)(x) = h(�0 (u(X) > x)) = h(Su(X)(x)). Since
the functions SX, h, u, Su(X) are strictly monotonic, G –1

u(X) (t) = S –1
u(X) (h–1(t)) =

u (S –1
X (h–1(t))). Vu, h(X) can then be written as:

Vu, h(X ) = X .u S h t dt1 1

0

1 - -# ]`` gjj
By performing the change of variable t = h(SX (x)), we obtain:

Vu, h(X ) = X .u x dh x u x h x f x dx�X X= -
3

3

3

3

+

-

+

-

S S# #] ]^ ] ]^ ]^g gh g gh gh
Thus Vu, h(X ) = E [u(X ) h�(SX(X ))]. ¡
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Corollary 1. Rh(X ) = – E [Xh�(SX (X ))].

Lemma 6. Let X, N ∈ X and b ∈ �. Then Vu, h (X + bN ) is differentiable with
respect to b and the partial derivative equals:

b2
2 Vu, h(X + bN) = E [Nu�(X + bN) h�(SX + bN (X + bN))].

Proof: As in the proof of the previous lemma, we use the quantile representa-
tion of the Choquet integral:

Vu, h(X + bN) = X Xb b .u S h t dt u S s dh sN N
1 1

0

1 1

0

1
=+

- -

+

-# #]`` ]` ]gjj gj g
Assuming continuity of conditional densities, Tasche (2000) shows that:

X Xb b .S s E N X N S sb bN N
1 1

2
2

= + =+

-

+

-] ]g g8 B

Thus, the derivative of Vu, h(X + bN) with respect to b is:

b

b

b

b
b b

b b

X

X

X N X N

X N

X N

X N

X N
X N X N

X N X N

b b+ +

+

+

+

+

+ +

+ +

b

b

,

, .

X N u S s S s dh s

u S s E N X N S s dh s
S s y

u y E N X N y dh S y

u y n
f y

n y
dn h S y f y dy

nu y h S y n y dndy

b b b

b

b

�

�

�

� �

� �

,

,

,

u h

N

N

N

N

1

0

1 1

1

0

1 1

1

2
2

2
2

+ = =

+ = =
=

+ = =

- =

3

3

3

3

3

3

3

3

3

3

- -

-

+

- +

-

+

-

-

+

+

-

-

+

-

+

f

f

V #

#

#

##

##

^ ]` ] ]
]` ] ] ]`

^ ^_
^ ^

^e ^_ ^_
^ ^_ ^

h gj g g
gj g g g j

h hi
h h

h o hi hi
h hi h

8
6

B
@

So, we finally obtain:

bX N+ .X N E Nu X N h S X Nb b b b�,u h2
2

+ = + +�V ^ ^ ^_h h hi8 B
¡

Corollary 2.

bX N+N .R X N E h S X Nb b b�h2
2

+ = - +^ ^_h hi8 B
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