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Abstract

Conditional value-at-risk (CVaR) is widely used in portfolio optimization as a measure of risk.

CVaR is clearly dependent on the underlying probability distribution of the portfolio. We show how

copulas can be introduced to any problem that involves distributions and how they can provide

solutions for the modelling of the portfolio. We use this to provide the copula formulation of the

CVAR of a portfolio. Given the critical dependence of CVaR on the underlying distribution, we

use a robust framework to extend our approach to Worst Case CVaR (WCVaR). WCVaR is achieved

through the use of rival copulas. These rival copulas have the advantage of exploiting a variety of

dependence structures, symmetric and not.

1 Introduction

In this paper we look into the problem of portfolio optimization where the assets of the portfolio are

described by random variables. In this situation the selection of the optimal portfolio depends on the

underlying assumptions on the behavior of the assets and the choice on the measure of risk. Usually

the objective is to find the optimal risk-return trade-off.

One of the pioneers in portfolio optimization was Markowitz [14] who proposed the practical

mean-variance framework for risk return analysis. Although the most common measure for the

estimation of the return of the portfolio remains the expected return many other ways of calculating

the risk have been developed. A widely used measure of risk is Value at Risk (VaR). VaR is the

measure of risk that is recommended as a standard by the Basel Committee. However, VaR has been

criticized in the recent years mainly for two reasons. Firstly, VaR does not satisfy sub-additivity

and hence it is not a coherent measure of risk in the way that is defined by Artzner et al. [2]. As a

consequence it is not a convex measure of risk and thus it may have many local extrema which cause

technical issues when optimizing a portfolio. Secondly, it gives a percentile of loss distribution that

does not provide an adequate picture of the possible losses in the tail of the distribution. Szego [26]

uses this argument to state that ”VaR does not measure risk”. Then he suggests alternative measures

of risk with one of them being Conditional Value at Risk (CVaR).

CVaR is the expectation of the distribution above VaR. Thus, the value of CVaR is affected by the

fatness of the tail of the distribution. Hence, CVaR provides a better description of the loss on the

tail of the distribution. Rockafellar and Uryasev [19, 20] proposed a minimization formulation that

usually results in a convex or linear problem. These are desirable aspects of CVaR and have paved
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the way of its use in risk management and portfolio optimization. A literature review on CVaR can

be found in Zhu and Fukushima [28] and the references therein.

Following the formulation of Rockafellar and Uryasev [19, 20] in order to calculate CVaR one has

to make some assumptions on the uncertainty characterization of the assets. This can be in the form

of an uncertainty domain like a hypercube or ellipsoidal in which all feasible uncertainty values lie.

An alternative is by assuming some multivariate distribution [28]. In this paper we focus on the

selection of multivariate distributions.

Gaussian distribution is the most commonly used multivariate case. It is easy to calibrate and

also there are very efficient algorithms to simulate Gaussian data. This also applies to some extent to

elliptical family of distributions. One disadvantage of using Gaussian distribution is its symmetry.

This implies that the probability of losses is the same as the probability of gains. Studies suggest

that at least in the context of financial markets, assets exhibit stronger comovements during a crisis

as opposed to prosperity [1, 11, 12]. The second disadvantage is that it uses linear correlation

as a measure of dependence. As the name suggests, linear correlation is characterized by linear

dependencies. Since the observation of asymmetric comovements mentioned above suggests non-

linear dependencies, linear correlation may not be an adequate measure of dependence [2, 26].

One way of addressing the limitations of the symmetry underlying elliptical distributions is

to consider mixture distributions. A linear combination of a set of distributions is used to fit the

given sample by optimizing the combination weights. Hasselblad [9, 10] was one of the first who

looked into mixture distributions and how their parameters can be estimated. Zhu and Fukushima

[28] avoid the assumptions needed on the set of distributions and their parameters and also avoid

the estimation of the weights. Subsets of historical returns are used to represent data arising from

different distributions and a worst-case scenario approach is applied to avoid the calibration of the

weights. Hu [11, 12] and Smillie [25] use mixture copulas to fit their data samples but they only

consider the bivariate case. The work of Hu [11, 12] and Zhu and Fukushima [28] motivates us to

introduce copulas within a worst case robust scenario framework.

Copulas are multivariate distribution functions whose one-dimensional margins are uniformly

distributed on the closed interval [0,1] [4, 17, 24]. The uniformmargins can be replaced by univariate

cumulative distributions of random variables [4, 17, 24]. This implies that copulas consider the

dependency between the marginal distributions of the random variables instead of focusing directly

on the dependency between the random variables themselves. This makes them more flexible than

standard distributions because it is possible to separate the selection of the multivariate dependency

from the selection of the univariate distribution. As an extension to that, the calibration of the

multivariate distribution can be separated into two steps [4]. Also, the fact that copulas describe the

dependency between the marginal distributions which are monotonic makes them invariant under

monotonic transformations [4, 17]. Copulas are associated with many measures of dependence that

measure the monotonic dependencies between two random variables. Furthermore, like copulas

themselves these monotonic measures are invariant under monotonic transformations [7, 23, 27].

In this paper, we mainly focus on Archimedian copulas. This is a family of copulas that exhibits

some interesting characteristics that can be utilized in our distribution modeling as discussed in the

next section.

The paper is structured as follows. In Section 2 we introduce copulas and the associatedmeasures

2



of dependence together with some theoretical background. In Section 3 we derive CVaR for copulas.

We extend CVaR to WCVaR through the use of mixture copulas. We conclude the section by stating

the generalized optimization problem for WCVaR. In Section 4 we construct a model based on the

theory of the previous sections. Then, we provide two numerical examples where we asses the

performance of our model. Finally, we close with conclusions.

2 Copulas

Copulas arise from the theory of probabilistic metric functions and where first introduced by Sklar

in 1959 [24]. Copulas are multivariate distribution functions whose one-dimensional margins are

uniformly distributed on the closed interval I ≡ [0, 1]. Amore rigorous definition for copulas is given

below.

Definition 2.1. An n dimensional copula (n-copula) is a functionC from In to Iwith the following properties

1. C(u1, .., ui, ..., un) = 0 if any ui = 0 for i = 1, 2, ..., n (we also describe a function with this property as

grounded)

2. C (1, ..., 1, um < 1, ..., 1) = um for all um ∈ I where m = 1, 2, ..., n

3. C(u) ≥ 0 ∀ u ∈ In (we also describe a function with this property as n-increasing)

We continue with the definition of distribution functions and joint multivariate distribution func-

tions. This is used when we discuss the relation between distribution functions and copulas.

Definition 2.2. A distribution function is a function F from R to I with the following properties:

1. F is nondecreasing

2. F(−∞) = 0 and F(∞) = 1

Definition 2.3. A joint multivariate distribution function is a function from Rn to I with the following

properties

1. F is n-increasing

2. F is grounded

3. F(∞) = 1

4. F(∞, ...,∞, xm,∞, ...,∞) = Fm(xm)

where m = 1, 2, ..., n.

We can use copulas to replace probability distributions in all of their applications thanks to Sklar’s

theorem. Sklar’s theorem is probably the most important theorem that links copulas to probability

distributions. This theorem, together with the corollary that follows provide the relation between

n-Copulas and multivariate distributions. Sklar introduced his theorem in 1959 [24] where also the

proof for its bivariate case can be found. The multivariate case is discussed by Schweizer and Sklar

[22] (the proofs for the corollary can be found in the same references).
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Theorem2.4 (Sklar’sTheorem). Let F be an n-dimensional distribution functionwithmargins F1, F2, ..., Fn.

Then there exists an n-copula C such that, for all x ∈ Rn,

F(x1, x2, ..., xn) = C(F1(x1), ..., Fn(xn)). (1)

Furthermore, if F1, ..., Fn are continuous, then C is unique; otherwise C is unique on RanF1 × ... × RanFn

(Ran ≡Range).

Corollary 2.5. Let F be an n-dimensional distribution function with margins F1, ..., Fn, and let C be an

n-copula. Then, for any u ∈ In,

C(u1, ..., un) = F(F
(−1)
1

(u1), ..., F
−1
n (un)) (2)

where F−1
1
, ..., F−1n are the quasi-inverses of the marginals.

Themargins F1, ..., Fn and the multivariate distribution function F are as defined by Definitions 2.2

and 2.3. The reason that ui can be replaced by Fi(xi) is because they both belong to the domain I and

they both are uniformly distributed (Let u ∼ U(0, 1) then P(F(x) ≤ u) = P(x ≤ F−1(u)) = F(F−1(u)) = u).

Using Theorem 2.4 and Corollary 2.5 we can also derive the relation between the probability

density functions and the copulas. In the following definition f is the multivariate probability

density function of the probability distribution F and f1, ..., fn are the univariate probability density

functions of the margins F1, ..., Fn.

Definition 2.6. The copulas density of a n-copula C is the function c : In → [0,∞) such that

c(u1, ..., un) ≡
∂nC(u1..., un)

∂u1...∂un
=

f (x1, ..., xn)
∏n

i=1 fi(xi)
(3)

We can see from (1)-(3) that copulas decompose the multivariate probability distribution from

its margins. The margins F1, ..., Fn can be any distribution of our choice while the copula simply

describes the monotonic relation between the margins. This is one of the biggest advantages of

copulas because they separate the problem of finding the correct distribution into two parts, one is

finding the distribution of the margins and second the dependency between them. This is much

easier from finding directly the multivariate dependency between the random variables. Hence, the

calibration of the copulas become an easier task. The calibration methods for copulas can be found

in Cherubini et al. [4]. Also, an introduction to copulas can be found in Nelsen [17] and Schweizer

and Sklar [22] discuss the relationship of copulas to probabilistic metric spaces and the underlying

theory.

2.1 Special cases of copulas and related measures of dependence

We introduce the copulas to be used in our examples. Together with the copulas we consider their

associatedmeasures of dependence. The focus is on a special family of copulas calledArchimedian. We

also consider the Gaussian copulawhich is the copula version of themultivariate normal distribution.

Archimedian copulas were firstly introduced by Ling [13]. They belong to the family of proba-

bilistic metric spaces that have some of the properties of Archimedes triangle function and hence the
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name [22]. This is a family of copulas that arises differently from the rest. Instead of using Theorem

2.4 we construct them using directly a function ϕ, known as a generator, which enables us to write

the expression for the copula in a closed form.

Definition 2.7. Given a function ϕ : I→ [0,∞) such that ϕ(1) = 0 and ϕ(0) = ∞ and having inverse ϕ(−1)

completely monotone, an n-place Archimedian copula is a function Cϕ : I
n → I such that

Cϕ(u) = ϕ
(−1)(ϕ(u1) + ... + ϕ(un)).

An extended literature regarding the Archimedian copulas can be found in Cherubini et al.

[4], Nelsen [17], Schweizer and Sklar [22]. In our analysis we focus on three Archimedian copulas,

Clayton, Gumbel and Frank. Our motivation for using these particular copulas comes fromHu [11, 12].

Hu [11, 12] focus is the calibration of bivariate mixture copula (see also Hasselblad [9, 10] for mixture

distributions). The reasons that he chose these particular copulas are mainly two. Each copula

better describes a different type of dependency. Clayton and Gumbel are non symmetric copulas

that describe more adequately positive and negative dependencies respectively. Frank copula is

symmetric but it has different properties to Gaussian copula. Hence, by using them in a mixture

structure we cover a large spectrum of possible dependencies. Also, these three copulas are very easy

to calibrate.

The definitions of the three Archimedian copulas are the following:

Definition 2.8. Given a generator of the form ϕ(u) = u−α − 1 with α ∈ (0,∞) then, the Clayton n-copula is

given by

CCl(u) = max[(u−α1 + ... + u−αn − n + 1)−1/α, 0].

Definition 2.9. Given a generator of the form ϕ(u) = (− ln(u))α with α ∈ (1,∞) then, the Gumbel n-copula

is given by

CGu(u) = exp
{

− [(− lnu1)
α + ... + (− lnun)

α]1/α
}

.

Definition 2.10. Given a generator of the form ϕ(u) = ln
(

exp(−αu)−1
exp(−α)−1

)

with α ∈ (0,∞) then, the Frank

n-copula is given by

CFr(u) = −
1

α
ln

{

1 +
(e−αu1 − 1) · ... · (e−αun − 1)

(e−α − 1)n−1

}

.

For the calibration of the free parameters α of the Archimedian copulas we will use Kendal’s τ.

Kendal’s τ is a bivariate measure of dependence and is defined by the following equation

τ(X1,X2) = 4

∫ ∞

−∞

∫ ∞

−∞

F(x1, x2)dF(x1, x2) − 1

= 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2) − 1.

(4)
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As we can see from equation (4), Kendal’s τ measures the dependency between the cumulative

distributions of randomvariableX1 andX2 anddoes not depend on the randomvariables themselves.

Thus, τ is a measure of monotonic dependence and is invariant under monotonic transformations.

This makes it a more robust measure of dependence when compared to linear correlation. For

comparison purposes, we also define linear correlation as

̺(X1,X2) =
1

σ(X1), σ(X2)

∫ ∞

−∞

∫ ∞

−∞

[F(x1, x2) − F1(x1)F2(x2)]dx1dx2

=
1

σ(X1), σ(X2)

∫ 1

0

∫ 1

0

[C(u1.u2) − uv]dF
(−1)
1

(u1)dF
(−1)
2

(u2)

(5)

where σ(Xi) denotes the variance of the random variable Xi. It can be seen that in the copula version

of of ̺, the dependency on the random variables X1 and X2 remains in in form of the volatility σ(Xi).

An extensive literature onmonotonic measures of dependence can be found inNelsen [17], Schweizer

and Wolff [23], Wolff [27] and the references therein.

Let us denote the free parameter α of each of the Archimedian copulas by αCl for CCl (Definition

2.8), αGu for CGu (Definition 2.9) and αFr for CFr (Definition 2.10). For these three cases we have closed

form relations with Kendall’s τ equation (4) [4]. For CCl we have that

τ = 1 − α−1Cl , (6)

for CGu

τ =
αGu
αGu + 2

, (7)

and for CFr we have

τ = 1 +
4[D1(αFr)]

αFr
(8)

(9)

where

Dk(α) =
k

αk

∫ α

0

x

exp(x) − 1
dx for k = 1, 2.

As we can see from Definitions 2.8-2.10 there is only one free parameter to calibrate regardless of

the dimensions of the copula. On the other hand we have a τ for each pair of random variables. Our

solution to this problem is to calculate the τ for all the pairs and select the largest. This seems to be

consistent with the use of copulas within a worst case robust framework as it provides the extreme

scenario for each copula.

We define the Gaussian copula as it is the most commonly used by practitioners [4, 5, 7, 21, 25].

Definition 2.11. Given a n-place standard multivariate normal distribution function Φn parameterized by a

dispersion matrix P ∈ [−1, 1]n×n, the Gaussian copula is the function CGa : I
n → I such that

CGa(u) = Φ(Φ
−1
1 (u1), ...,Φ

−1
n (un)). (10)

For CGa to be called Gaussian copula all the margins {Φi}
n
i=1

have to be normally distributed but

they can have different mean and variance.
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3 Worst Case Value at Risk

Having introduced the theorems that enable us to associate copulas with distributions we will derive

the copula formulation of Worst Case Value at Risk (WCVaR). In order to show how WCVaR can

be derived for copulas we follow the same approach as Zhu and Fukushima [28]. At every step

involving the use of distributions we present the equivalent copula formulation. For the derivation

of the copula formulation we use equations (1)-(3).

In order to define the WCVaR we first have to define Value at Risk (VaR) and Conditional Value at

Risk (CVaR). We first give VaR

Proposition 3.1. Let w ∈W ⊆ Rm be decision vector, u ∈ In be a random vector, g̃(w,u) the cost function

and F(x) = (F1(x1), ..., Fn(xn)) a set of marginal distributions where u = F(x). Also, let assume that u follows

a continuous distribution with copula density function c(.). Then VaRβ for a confidence level β is defined as

VaRβ(w) , min{α ∈ R : C(u|g̃(w,u) ≤ α) ≥ β}. (11)

Given a decision w ∈ W and a random vector x ∈ Rn which follows a continuous distribution

with density function f (.), the probability of g(w, x) not exceeding a threshold α is represented as

Ψ(w, α) ,

∫

g(w,x)≤α
f (x)dx

,

∫

g(w,x)≤α
c(F(x))

n
∏

i=1

fi(xi)dx

,

∫

g̃(w,u)≤α
c(u)du

, C(u|g̃(w,u) ≤ α),

where fi(xi) =
∂Fi(xi)
∂xi

is the univariate probability distribution of the individual elements of the random

vector x (see Definition 2.6). g̃(w,u) = g(w, F−1(u)) where F−1(u) = (F−1
1
(u1), ..., F−1m (un)) maps the

domain of the cost function from Rn to In, as implied by the transformation ui = Fi(xi). For the

deriviation of the copula version of Ψ(w, α) we use equation (3). Having defined Ψ(w, α), we

consider the VaR. Given a fixedw ∈W and a confidence level β, VaR is defined as

VaRβ(w) , min{α ∈ R : Ψ(w, α) ≥ β}

, min{α ∈ R : C(u|g̃(w,u) ≤ α) ≥ β}

which give as equation (11). We continue with the definition of the CVaR with respect to VaR.

Proposition 3.2. Given w, u, F(x) and g̃(w,u) as in Proposition 3.1 we define CVaRβ for a confidence level

β as

CVaRβ(w) ,
1

1 − β

∫

g̃(w,u)≥VaRβ(w)

g̃(w,u)c(u)du. (12)
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Again, we start from the equation of CVaR that arise from the probability density function f (.)

and we derive the copula form.

CVaRβ(w) ,
1

1 − β

∫

g(w,x)≥VaRβ(w)

g(w, x) f (x)dx

,
1

1 − β

∫

g(w,x)≥VaRβ(w)

g(w, x)c(F(x))
n
∏

i=1

fi(xi)dx

,
1

1 − β

∫

g̃(w,u)≥VaRβ(w)

g̃(w,u)c(u)du

(13)

which gives as CVaR as defined in Proposition 3.2. Following Rockafellar and Uryasev [19] we

formulate equation (13) as the following minimization problem

Gβ(w, α) , α +
1

1 − β

∫

x∈Rn

[g(w, x)− α]+ f (x)dx

, α +
1

1 − β

∫

u∈In
[g̃(w,u) − α]+c(u)du.

(14)

Hence, we have

CVaRβ(x) = min
α∈R

Gβ(w, α). (15)

By solving the minimization problem in equation (15), we directly obtain both the values of CVaR

and VaR. From Proposition 3.1 we have that the value of VaR is the value of α.

In order for the above definitions to be computed, exact knowledge of the distribution f (x)

or copula density c(u) and the margins F(x) is needed. As the aim in this paper is to represent

distributions with copulas, we shall omit using f (x) and use c(u) instead. The equivalence of the two

is discussed in the previous section. Knowledge of the copula C(u) and its margins {ui = Fi(xi)}
n
i=1

implies knowledge of f (x) and c(u). A copula representation of the distribution of x cannot be

expected to be exact. Thus, we assume that our copula representation belongs to a set of copulas

c(.) ∈ C . In order to be robust, from that set we want to choose the worst performing copula or

copulas, as the worst-case might not be unique. Hence, we define WCVaR.

Definition 3.3. The Worst-case CVaR (WCVaR) for fixedw ∈W with respect to C is defined as

WCVaRβ(w) , sup
c(.)∈C

CVaRβ(w). (16)

Is known that CVaR is a coherent measure of risk [2, 26, 28]. For a measure of risk ρ mapping a

random vector X to be coherent it has to satisfy the following properties:

(i) Subadditivitty: for all random vectors X and Y, ρ(X + Y) ≤ ρ(X) + ρ(Y);

(ii) Positive homogeneity : for positive constant λ, ρ(λX) = λρ(X);

(iii) Monotonicity: if X ≤ Y for each outcome, then ρ(X) ≤ ρ(Y);

(iv) Translation invariance: for constant m, ρ(X +m) = ρ(X) +m.

Zhu and Fukushima [28] prove thatWCVaRpreserves coherence. They also give the following lemma

from Fan [8] which allows to formulate the problem into a tractable one.
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Lemma 3.4. Suppose thatW and X are nonempty convex sets in Rn and Rm, respectively, and the function

g(w, x) is convex in w for any x, and concave in x for anyw. Then we have

min
w∈W

max
x∈X

g(w, x) = max
x∈X

min
w∈W

g(w, x) (17)

WealsouseLemma3.4 to extend theproof fromZhuandFukushima [28] to copulas and eventually

formulate our problem as a minmax problem.

3.1 Mixture Copula

In this example the distribution of the vector of returns x is described by a mixture copula

C(F(x)) = λT~C, (18)

where λ ∈ Λ = {λ : eTλ = 1, λ � 0, λ ∈ Rl} and ~C = (C1(F(x)), ...Cl(F(x))) is the vector with copulas and

F(x) = (F1(x), ..., F1(x)) is the vector of the cumulative univariate distributions. We can apply equation

(3) to equation (18) to obtain the density of the mixture copula. Then, we can use this density in the

equations in Section 3.1 to obtain

Gβ(w, α) = α +
1

1 − β

∫

u∈In
[g̃(w,u) − α]+

l
∑

i=1

λici(u)du =
l
∑

i=1

λiG
i
β(w, α), (19)

where

Gi
β(w, α) = α +

1

1 − β

∫

u∈In
[g̃(w,u) − α]+ci(u)du for i = 1, 2, ..., l. (20)

Then, the optimization problem thatwe need to solve is stated by the following theorem and corollary

from Zhu and Fukushima [28]:

Theorem 3.5. For eachw, WCVaRβ(w) with respect to C is given by

WCVaRβ(w) = min
α∈R

max
λ∈Λ

Gβ(w, α), (21)

where Λ = {λ : eTλ = 1, λ � 0, λ ∈ Rl}.

Corollary 3.6. Minimizing WCVaRβ(w) overW can by the following minimization

min
w∈W

WCVaRβ(w) = min
w∈W

min
α∈R

max
λ∈Λ

Gβ(w, α). (22)

More specifically, if (w∗, α∗, λ∗) attains the right hand side minimum, then (w∗ attains the left-hand side

minimum.

The proofs of the Theorem 3.5 and Corollary 3.6 can be found in Zhu and Fukushima [28]. They

provide the proof for the case of mixture distributions. The theorems in Section 2 together with

Proposition 3.1 and Proposition 3.2 show that Theorem 3.5 and Corollary 3.6 can be applied to

copulas. For the sake of completeness we give the logic behind the proof and we continue with the

formulation of the optimization problem.
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In order to optimize the portfolio we need to solve

min
w∈W

WCVaRβ(w) ≡ min
w∈W

max
λ∈Λ

min
α∈R

Gβ(w, α) (23)

Since the mixture copula (18) is linear in λ, Zhu and Fukushima [28] use Lemma 3.4 to show that (23)

can be written as

min
w∈W

min
α∈R

max
λ∈Λ

Gβ(w, α). (24)

Then, Zhu and Fukushima [28] extend equation (24) one step further by using equation (19). The

equivalent to equation (24) is

min
(w,α,θ)∈W×R×R















θ :

l
∑

i=1

λiG
i
β(w, α) ≤ θ,∀λ ∈ Λ















(25)

and θmust satisfy

Gi
β(w, α) ≤ θ, for i = 1, 2, ..., l. (26)

Equation (25) can thus be reduced to

min
(w,α,θ)∈W×R×R

{

θ : Gi
β(w, α) ≤ θ, i = 1, 2, ..., l.

}

(27)

A straightforward approach to evaluating equation (27) is byMonte Carlo simulation. Rockafellar

andUryasev [19] give an approximation ofGβ(w, α),whereMonte Carlo simulation can be used. They

write Gβ(w, α) as

Ĝβ(w, α) = α +
1

S(1 − β)

S
∑

k=1

[g̃(w,u[k]) − α]
+. (28)

where u[k] is the k
th sample vector (again here we give the copula version where u[k] = F(x[k])). Thus,

using equation (28) we can express equation (27) for evaluation using Monte Carlo simulations

min
(w,α,θ)∈W×R×R















θ : α +
1

Si(1 − β)

Si
∑

k=1

[g̃(w,ui
[k]) − α]

+ ≤ θ, i = 1, 2, ..., l.















, (29)

where ui
[k] is the k

th sample arising from copula Ci of the mixture copula (equation (18)). Si is the size

of the sample that arises from Ci.

Following Zhu and Fukushima [28] we write the minimization problem as

min θ (30)

s.t. w ∈W, v ∈ Rm, α ∈ R, θ ∈ R (31)

α +
1

Si(1 − β)
(1i)Tvi ≤ θ, i = 1, ..., l, (32)

vik ≥ g̃(w,ui
[k]) − α, k = 1, ..., Si, i = 1, ..., l, (33)

vik ≥ 0, k = 1, ..., Si, i = 1, ..., l, , (34)

where v = (v1; ...; vl) ∈ Rm with m =
∑l

i=1 S
i and 1i = (1; ..; 1) ∈ RSi .
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4 Portfolio management under a worst case copula scenario

In this section we demonstrate how the theory in Section 3 can be used for the optimization of a

portfolio of financial assets. Financial assets can be described by distributions and subsequently their

risk can be measured with the use of CVaR.

We consider a portfolio of n financial assets A1, ...An. We assume that the returns of the assets are

log-normally distributed [3]

xi =
dAi(t)

Ai(t)
= µidt + σidBi(t), (35)

where µi and σi is the mean and the variance of the random variable xi and dBi(t) denotes a Wiener

process. Hence, we have the return vector x = (x1, ..., xn) ∈ Rn and u = (u1, ..., un) = (Φ1(x1), ...,Φn(xn)).

We also define the decision vector w = (w1, ...,wn) ∈ R
n, which denotes the amount of investment

that we have in each financial asset in our portfolio. We also define the loss function

g̃(w,u) = −wT
Φ
−1(u), (36)

whereΦ−1(u) = (Φ−1
1
(u1), ...,Φ−1n (un)). Hence, the loss function is the negative of the portfolio return

wT
Φ
−1(u).

Having chosen the univariate distributions for the asset returns, we now consider the selection of

the copula that describes the dependency between these returns. We first solve a simple optimization

problem using the Gaussian copula. Consider the problem

min
w∈W

CVaR(w), (37)

whereW defines the domain ofw as described by its constrains and u ∼ CGa (see equation (13)). This

is equivalent to (30)-(34) when l = 1.

The advantage of problem (37) is that it employs the Gaussian copula. The latter is the most

commonly used copula in practice for characterisingmultivariate dependencies. It is also easy to use.

Furthermore, the Gaussian copula is a desirable reference point for assessing portfolio performance.

There are, however drawbacks to the Gaussian copula. The first is its symmetry. Studies show that

assets have stronger negative comovements than positive [1, 11, 12]. A second disadvantage is the

linear correlation that can only capture linear dependencies between assets. Thismay not be adequate

[2, 26]. Both of these disadvantages may lead to bad performance in the presence of market shocks.

By using a mixture copula we aim to conmpesate for some of these disadvantages. In expression

(38), the set C contains the copulas from Section 2.1. The aim is to provide cover for all the types of

dependencies and thereby use a robust measure of dependence (Kendall’s τ (4)). This robustness is

further augmented by the worst-case approach. Thus, the second problem we solve is

min
w∈W

WCVaR(w), (38)

whereW is defined as above and u ∼ c and c ∈ C is a set of copulas (see equation (16))

Problems (37) and (38) are solved using equations (30)-(34). We assume W to be convex and,

without loss of generality (and for simplicity) we define it with the following constraints:

eTw = 1. (39)
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Furthermore, to assure portfolio diversification, the additional constrains

w ≤ w ≤ w (40)

can be imposed wherew,w ∈ [−1, 1] are lower and upper bounds respectively.

Finally, since we optimize an asset portfolio we are interested in its performance. Hence, it is

often desirable to impose an additional performance restrictions in terms of the minimum expected

return µ

E(wTF−1(u)) ≥ µ. (41)

4.1 Numerical examples

We use the following seven indices: Nikkey225, FTSE100, Nasdaq, DAX30, Sensex, Bovespa, Gold

index. These represent six different stock exchange markets from different parts of the world and

one commodity index. The markets corresponding to the indices are Japan, England, USA, Germany,

India and Brazil. These markets, with the inclusion of the commodity are intened to lead to a

diversified portfolio.

The data used covers the period November 1998 - July 2011. This time line includes the dot-com

bubble, South American crisis and Asian crisis. This three events took place between 1998 and 2002

and they had a large negative impact on the world markets. The data also include the 2008 Global

Recession crisis. Both periodes of crises can be observed in Figure 1.

Jan−2000 Jan−2002 Jan−2004 Jan−2006 Jan−2008 Jan−2010
0

1

2

3
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5

6

 

 

NIKKEI225

FTSE100

NASDAQ

DAX30

SENSEC

BOVESPA

GOLD

Figure 1: Seven indexed from 1998 to 2011. All the indices are normalized to 1 on July 2003

In both problems that we solve (see equations (37) and (38)), we use the period between 1998 and

2003 (1200 time steps) to calibrate the models during a crisis. We expect to show that the risk and

the dependencies between assets during a crisis period can be assesed more efficiently with the use

of WCVaR as opposed to using only Gaussian copula CVaR. The Worst Case Portfolio (WCP), given

by (38) should perform more robustly than the Gaussian Portfolio (GP), given by (37). Overall, and
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particularly during a period of crisis, we expect that the WCP will perform better in the presence of

downside shocks. Thus, the biggest test to the performance of the two portfolios will be the 2008

sub-mortgage crisis.

4.1.1 Static portfolio

In our first example, we consider a static portfolio in which the weights of the portfolio are calculated

only once. Rebalancing is done using the sameweights throughout the entire lifespan of the portfolio.

For the computatuion of the weights we calibrate our copulas using the period between 1998 to 2003

and then solve equations (37) and (38). The means and the variances of the seven assets as estimated

from the period between 1998 to 2002 are given in Table 1.

The parameters in Table 1 are used for the univariate distributions of the assets as defined by

equation (35). The univariate distributions together with the four copulas of Section 3 are used to run

Monte Carlo simulations in order to provide the inputs ui
[k]

needed to solve equations (30) - (34).

Table 1: The mean and variance of the seven assets between November 1998 and June 2003

(10−3) Mean Variance

Nikkey225 -0.41 0.21

FTSE100 -0.32 0.12

Nasdaq -0.22 0.45

DAX30 -0.38 0.23

Sensex 0.18 0.31

Bovespa 0.36 1.14

Gold 0.14 0.06

Simulating data fromGaussian copula is straight forward with the use of the Cholesky decompo-

sition of the correlationmatrix. This, together with the ease of calibration is what makes the Gaussian

copula attractive. While simulating data from Gaussian copula is straight forward, simulating data

from other copulas in general can be a difficult task which makes them less attractive. To simulate

data from the three Archimedian copulas we use the algorithms found in Melchiori [16]. Melchiori

[16] provides a summary of the results from Devroye [6], Marshall and Olkin [15], Nolan [18].

To solve equations (30)-(34) we also have to define the constrainsW. We use as a starting point

Equations (39)-(41). We specifyw ≥ 0. This implies that we only allow long positions in the portfolio.

The upper bound w in equation (40) is implicitly implied by equation (39).

The optimization problems are solved using the YalmipMatlab package, together with the CPLEX

solver. The PC used for the implementation of our numerical examples is a Intel Core 2 Duo, 2.8GHz

with a 4 GB memory. For each of the four copulas we run 10000 simulations for each of the seven

assets. Both simulations and solving the two problems (37) and (38) take less than a minute.

The two problems (37) and (38) are solved for µ = 0 to 0.00025. The results are presented in Figure

2 and Table 2. In Table 2 we show the details for the performance of the two portfolios (GP andWCP)

both for ’In Sample’ and ’Out of Sample’. ’In Sample’ performance shows that the lower bound µ

is always satisfied at least by one of the two portfolios. Also, the overall (in and out of sample)

performance of the WCP portfolio has always higher volatility and CVaR. This is expected since the

WCP has to satisfy more constraints in the optimization problem i.e. the same contraints that exist for
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Gaussian copula in the GP has to be satisfied for all four copulas used in the WCP. Hence, the CVaR

obtained for the WCP is the CVaR of the worst case copula, which is the equivalent of θ requirement

in equation (26). This copula also has fat tails. Hence, the higher volatility.

AWCPwould be expected to perform better than the GP at least under worst case scenarios. This

should apply throughout the out of sample testing period. Hence, we focus on the ’Out of Sample’

period. In Figure 2 it can be verified that the performance of GP andWCP are very similar up to 2008.

When the 2008 crisis occurs, the WCP outperforms the GP and maintains this advantahe thereafter.

This can be seen even more clearly from the lower Figure 2 where we show the difference between

the two portfolios. The difference starts to significantly increase during 2008-2011.

In the case of of µ = 0 the robust portfolio outperforms the Gaussian portfolio in the Average

Return (AR), Total Return (TR) andMaximumDrawdowns (MD1 andMD2). The advantage of WCP

on the AR and TR remains while µ < 0.00015. Although we do not get a better return form the WCP

when µ ≥ 0.0002, in Table 1 we see that the MD2 statistics are always better for the the WCP, i.e. the

losses of the WCP during the 2008 crisis where smaller than the GP and the WCP performed more

robustly.
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WCP − GP, absolute level difference

Figure 2: Satic portfolios, ’Out of Sample’ Portfolio performance for µ = 0 (41)

4.1.2 Dynamic portfolio

We consider the case when the optimal weights of the assets are recomputed. In this more dynamic

portfolio, the weights of the assets are recalibrated on a monthly basis.

At every step, we extend the in-sample calibration window by a month, then we solve problems

(37) and (38) to obtain the weights and then we keep the same weights for the rest of that month. We

do not adopt a moving window of calibration since we do not want to loose the information from the

old crises, in our case the crises between 1998 and 2002.

So, once again we solve equations (37) and (38) with the same constraints as in Section 4.1.1 but
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Table 2: Comparison of the performance of Gaussian optimal and Worst Case optimal portfolio

In Sample Out of Sample

µ GP (I) AR1 Vol2 CVaR0.95 AR1 Vol2 CVaR0.95 MD13 MD24 TR5

(10−3) WCP (II) (10−3) (10−3) (10−3) (10−3) (10−3) (10−3) (%) (%) (%)

0.00
I 0.00 6.66 14.4 0.56 9.00 22.1 -7.44 -31.8 198

II 0.13 9.29 19.2 0.70 12.2 29.1 -7.23 -28.9 277

0.10
I 0.10 7.05 15.1 0.66 9.84 23.9 -7.11 -31.4 263

II 0.13 9.29 19.2 0.70 12.2 29.1 -7.23 -28.9 277

0.15
I 0.15 7.56 16.2 0.71 10.4 25.3 -7.02 -316 300

II 0.15 9.04 18.7 0.71 12.0 28.8 -7.07 -29.6 286

0.20
I 0.20 7.95 16.9 0.73 10.2 24.9 -6.59 -39.7 319

II 0.20 8.80 18.1 0.72 11.1 26.8 -6.89 -35.4 300

0.25
I 0.25 11.3 24.0 0.74 11.8 28.5 -7.68 -49.8 313

II 0.25 11.8 24.2 0.72 12.0 28.4 -8.07 -44.7 296

1. AR : Average return over the period

2. Vol : The volatility defined by the standard deviation

3. MD1 : Maximum draw-down, The worst return between two consecutive days

4. MD2 : Maximum draw-down, The worst return between two days within a period

of maximum 6 months

5. TR : The total return from the beginning to the end of the period

with only one difference. Since we have an expanding calibration window the feasible space with

respect to the constraint (41) changes as a reasult of the changing values of µ used for the Monte

Carlo simulations (equation (35)). Thus, we introduce a dynamic minimum expected return. This is

achieved by defining the constraint corresponding to the dynamic minimum portfolio return as

E(wTF−1(u)) ≥ max[wEqTµ̂, 0], (42)

where µ̂ = (µ̂1, ..., µ̂n) is the vector of the asset return means as calculated using the calibration period

andwEq = (1/n, ..., 1/n) i.e. all the weights are equal.

For comparison purposes, we also include a simple portfolio not based on optimization. The

‘Equally weighted‘ portfolio (EWP) has equal positions in all assets i.e. we always use wEq as the

weights of the portfolio.

For all three portfolios (GP, WCP and EWP) we show the out of sample performace in Figure

3 and Table 3. The observations are very similar to the example in Section 4.1.1. The CVaR and

volatility of the WCP are higher than the GP but the MD2 and the overall return of the WCP is much

better. Also, for the case of the EWP, the volatility and the CVaR of the portfolio lies between the

other two portfolios but the portfolio performes worse with respect to the AR, TR and MD2, i.e. the

EWP sustains the largest losses during the 2008 Global Recession crisis.

5 Summary and Conclusions

In this paper we demonstrated one way of using copulas in a portfolio optimization framework

where the worst-case copula is considered. We particularly focus on the derivation of CVaR and

WCVaR for copulas. In the case of WCVaR we showed how a mixture copula can be used in order to

obtain a convex optimization problem.
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Figure 3: Dynamic portfolio performance with µ = max[0,wEqTx̄]

Table 3: Comparison of the performance of Gaussian optimal and Worst Case optimal portfolio

GP (I) Out of Sample

WCP (II) AR1 Vol2 CVaR0.95 MD13 MD24 TR5

EWP (III) (10−3) (10−3) (10−3) (%) (%) (%)

I 0.53 8.76 21.5 -7.49 -33.0 174

II 0.71 12.3 29.2 -7.20 -28.8 274

III 0.45 9.73 23.9 -6.52 -45.4 130

1. AR : Average return over the period

2. Vol : The volatility defined by the standard deviation

3. MD1 : Maximum draw-down, The worst return between two consecutive days

4. MD2 : Maximum draw-down, The worst return between two days within a

period of maximum 6 months

5. TR : The total return from the beginning to the end of the period

By introducing copulas in the CVaR framework we allow more flexibility in the selection of

the distribution. The most commonly used distribution for modeling multivariate dependencies is

Gaussian copula. This is because of the simplicity of its construction and the availability of efficient

methods for simulating from aGaussian copula. Its disadvantages are its symmetry and the ability to

only describe linear dependencies via the use of linear correlation in its structure. Symmetric behavior

and linear dependencies among assets are unrealistic [1, 2, 11, 12]. We discuss alternative distribution

functions in the formof copulas that can exhibit asymmetric behavior and utilizemonotonic measures

of dependence in their formulation. These are the three Archimedian copulas in Section 2.1 that are

also easy to simulate from using the algorithms given by Melchiori [16].

The advantage of using non symmetric distribution functions was demonstrated in the numerical

examples of Section 4.1. In Section 4.1 we show that for both static and dynamic strategies, for

low minimum expected portfolio return the WCPs outperforms the GPs in every sector except the

volatility and the CVaR. In particular during the 2008 crisis the WCPs performedmore robustly than
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the GPs, and that was true even for high minimum expected return.

We compare the performance of dynamic portfolios with that of the EWP. The EWP performance

shows that following a naive approachnot considering risk is not necessarily the correctway forward.

Although the EWPperformed relatively adequately soon after 2002, it suffered the biggest loss during

the 2008 crisis. As a result, the EWP became the worst performing portfolio among all portfolios in

the numerical examples.

It seems reasonable to conclude that when optimizing a portfolio, the associated risk needs to be

taken into account. All possible dependencies have to be considered in order to obtain robust results.

One way of achieving this is through copulas and mixture copulas, that allow dependency systems

with higher flexibility in their description than a single distribution. Further research is needed in

the area of modeling to achieve better description of dependencies and risk.
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